python中的协程(1)

2024-08-28 18:58
文章标签 python 协程

本文主要是介绍python中的协程(1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、协程概念


协程:称为微线程,是一种用户态的轻量级线程。
发展历程:
(1)最初的生成器变形yied/send;
(2)引入@asyncio.coroutine 和 yield from
(3)在python3.5版本中引入了async和await关键字
【协程理解】
  (1)普通理解:线程是级别的,他们是又操作系统调度;协程是程序级别的,由程序员根据需要自己调度。我们把一个线程中的一个个函数称为子程序。那么子程序在执行过程中可以中断执行别的子程序。别的子程序也可以中断回来继续执行之前的子程序,这就是协程。

 子程序:在所有的语言中都是层级调用,是通过栈实现的,一个线程就是执行一个子程序,子程序的调用总是一个入口,一次返回,调用的顺序是明确的。
(2)专业理解:协程拥有自己的寄存器上下文和栈,协程在调度切换时,将寄存器上下文和栈保存到其他的地方,在切回时,恢复先前保存的寄存器上下文和栈。因此,协程能保留上一次调用时的状态。
  因此每次过程重入时,就相当于进入上一次调用的状态。
【协程优点】
 (1)无需线程上下文切换的开销,协程避免了无意义的调度,由此提高了性能,但是,程序必须自己承担调度的责任,同时协程也失去了标准线程使用多cpu的能力。
(2)无需原子操作锁定及同步的开销。
(3)方便切换控制流,简化编程模型。
(4)高并发+高扩展性+低成本,一个cpu支持上万个协程不是问题。
【协程缺点】
(1)无法利用多核资源,协程的本质是单个线程,它不能同时将单个cpu的多个核使用,协程需要和进程配合使用才能运行在多核cpu上。但是一般不需要,除非是cpu密集型的应用。
(2)进行阻塞操作(耗时IO)会阻塞程序

【迭代传递数据】

####数据传递
def fun():data = "#"# yield 不但可以返回一个值,并且它还可以接收调用者发送的参数r =yield  dataprint("-------------1-------------------",r,data)r =yield  dataprint("-------------2-------------------",r,data)r =yield  dataprint("-------------3-------------------",r,data)r = yield data
g = fun()
# print(g,type(g)) # <generator object fun at 0x000001C73A4534F8> <class 'generator'>
# next无法传参,只能拿到返回值,传递参数需要使用send
print(g.send(None)) # send就是启动
print(g.send("a"))
print(g.send("b"))
print(g.send("c"))
# print(next(g))

【异步】

   异步是和同步相对的,指在处理调用这个事务之后,不会等待这个事务的处理结果,直接去处理第二个事务了,通过状态、通知、回调来通知调用者处理结果。

import time
import asyncio
# async就是定义异步函数(也就是定义一个协程)
async  def func():# 模拟一个耗时IO操作asyncio.sleep(1)print("time:%s" % time.time())
loop = asyncio.get_event_loop()
for i in range(5):loop.run_until_complete(func())

2、asyncio模块

 python3.5内置了asyncio对异步IO支持。
编程模式:是有一个消息循环,我们从asyncio模块中直接获取一个EventLoop的引用,然后把需要执行的协程仍到EventLoop中执行,就实现了异步。
说明:到目前为止实现协程的不仅只有asyncio,还有gevent和tornado都实现了类似的功能。
【关键字】
(1)event_loop 事件循环:程序开启一个无限循环也就是死循环,把一些函数注册到事件循环中;当满足条件发送时,调用相应的协程函数
(2)coroutine 协程:协程对象,指一个使用async关键字定义的函数,它的调用不会立即执行函数,而是会返回一个协程对象。协程对象需要注册到事件循环中,是由事件循环调用。
(3) task 任务:一个协程对象就是一个原生可以挂起的函数,任务则是对协程进一步的封装,其中包含了任务的各种状态。
(4) future:英文单词含义是将来,代表将来执行或没有执行的任务的结果,它和task和是哪个没有本质区别;
(5)async/await:python3.5用定义协程的关键字。async定义协程,await用于挂起阻塞异步调用接口。

2.1、定义一个协程

import time
import asyncio
# 通过async关键字定义了一个协程,,协程不能直接运行,需要将协程加入到事件循环中
async def run(x):print("waiting:%d" %x)
start = time.time()
coroutine = run(2) # 得到一个协程对象,这个时候run()函数没有执行
print(coroutine) # <coroutine object run at 0x000002B07ADC74C8> 发现没有调用loop = asyncio.get_event_loop() # 创建一个事件循环(注意:其实真是情况是asyncio模块中获取一个引用)# 将协程对象加入到事件循环中
loop.run_until_complete(coroutine)end = time.time()
print("Time:",end-start)

运行结果如下:

<coroutine object run at 0x000002351F018448>
waiting:2
Time: 0.006769657135009766

2.2、定义一个task任务

import asyncio
import time
async def run(x):# 定义协程对象print("waiting:%d" %x)
start = time.time()
coroutine = run(2) # 得到一个协程对象,这个时候run()函数没有执行
print(coroutine) 
loop = asyncio.get_event_loop() # 创建一个事件循环(注意:其实真是情况是asyncio模块中获取一个引用)
# 将协程对象加入到事件循环中,协程对象不能直接运行,在注册事件循环的时候,其实是run_until_complete()方法将协程对象包装成了一个任务对象
# task任务对象是Future类的子类对象,保存了协程运行后的状态,用于未来获取协程的结果。
# loop.run_until_complete(coroutine)
# 创建任务
task =  asyncio.ensure_future(coroutine)
# 第二种创建任务方式 task = loop.create_task(coroutine)
print(task)
#将任务加入事件循环中
loop.run_until_complete(task)
end = time.time()
print("Time:",end-start)

运行结果如下:

<coroutine object run at 0x0000021B568B9448>
<Task pending coro=<run() running at D:/py_workspace/spider_project/01异步/2创建一个任务task.py:6>>
waiting:2
Time: 0.0035004615783691406

2.3、协程绑定回调

import asyncio
import time
async def run(x):print("waiting:%d" %x)return  "done after %d" %x
def callback(future): # 定义一个回调函数,参数为future,任务对象print("callback",future.result())
start = time.time()
coroutine = run(2) # 得到一个协程对象,这个时候run()函数没有执行
loop = asyncio.get_event_loop() # 创建一个事件循环(注意:其实真是情况是asyncio模块中获取一个引用)
task =  asyncio.ensure_future(coroutine) # 创建任务
task.add_done_callback(callback) # 给任务添加回调,在任务结束后调用回调函数
loop.run_until_complete(task)#将任务加入事件循环中
end = time.time()
print("Time:",end-start)

运行结果:

waiting:2
callback done after 2
Time: 0.0018661022186279297

2.4、阻塞和await

import asyncio
import time
async def run(x):# async定义协程对象,使用await可以针对耗时的操作进行挂起,就像生成器yield一样,函数交出控制权。# 协程遇到await事件循环将会挂起该协程,执其他协程,直到其他协程也挂起或者执行完毕,再进行下一个协程的执行print("waiting:%d" % x)# 调用一个耗时IO操作await asyncio.sleep(x) # asyncio.sleep另一个协程对象return "done after %d over" % xdef callback(future):print("callback:",future.result())start = time.time()
coroutine = run(10) # 得到一个协程对象,这个时候run()函数没有执行
loop = asyncio.get_event_loop() # 创建一个事件循环(注意:其实真是情况是asyncio模块中获取一个引用)
task =  asyncio.ensure_future(coroutine) # 创建任务
task.add_done_callback(callback)
loop.run_until_complete(task)#将任务加入事件循环中
end = time.time()
print("Time:",end-start)

运行结果:

waiting:10
callback: done after 10 over
Time: 10.019726753234863

这篇关于python中的协程(1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115608

相关文章

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例