C++卷积神经网络实例:tiny_cnn代码详解(9)——partial_connected_layer层结构类分析(下)

本文主要是介绍C++卷积神经网络实例:tiny_cnn代码详解(9)——partial_connected_layer层结构类分析(下),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  在上一篇博文中我们着重分析了partial_connected_layer类的成员变量的结构,在这篇博文中我们将继续对partial_connected_layer类中的其他成员函数做一下简要介绍。

  一、构造函数

  由于partial_connected_layer类是继承自基类layer,因此在构造函数中同样分为两部分,即调用基类构造函数以及初始化自身成员变量:

partial_connected_layer(layer_size_t in_dim, layer_size_t out_dim, size_t weight_dim, size_t bias_dim, float_t scale_factor = 1.0): layer<Activation> (in_dim, out_dim, weight_dim, bias_dim), weight2io_(weight_dim), out2wi_(out_dim), in2wo_(in_dim), bias2out_(bias_dim), out2bias_(out_dim), scale_factor_(scale_factor) {}

  这里对于自身的成员变量的赋值采用直接复制的方式,weight2io_代表网络中映射矩阵中映射核的总个数,为(卷积核尺寸的平方*通道数*卷积核个数);out2wi_代表卷积层网络输出特征的维数,为(in_width - window_size + 1) * (in_height - window_size + 1) * out_channels;in2wo_代表卷积层输入输入的维数,为数据矩阵的行数*列数*通道数;bias2out_代表卷积层中加性偏置的总个数;out2bias_代表输出特征的维数。

  这里对partial_connected_layer的基类layer做了一个宏定义,方便后面使用:

  二、层属性计算参数

  由于卷积层和下采样层的参数众多,为了方便用户了解各个层的参数数量以及连接规模,这里提供三个参数个数计算函数,用以返回卷积层的下采样层中的对应参数个数。首先,返回当前层的待学习参数个数(包括卷积核权值和偏置):

  返回当前层与前一层的连接个数:

  返回当前层的特征输出维数:

   三、前向传播函数forward_propagation

  由于partial_connected_layer类是卷积层和下采样层的公共基类,而卷积层和下采样层同样都需要前向传播和反向传播功能,因此作者选择在partial_connected_layer类中定义前向传播算法和反向传播算法,而不是在两个子类中分别进行定义,至于这样做的原因,在后面的博文中会进行详细说明。

  这里封装的前向传播算法和前文介绍的全连接层中的前向传播算法类似,主要分为三大部分:前向传播的卷积过程、输出卷积结构、递归。

  首选在卷积过程中,需要进行卷积、对应系数扩展(这里系数默认为1,因此这一步基本可以忽略)、加偏置值,而且这些操作都是以Lamda表达式的方式来实现的:

  接下来需要将卷积结果传递给输出数组,这里主要需要先经过激活函数来做一步处理:

  最后通过递归的方式来完成算法的传播(前向传播和反向传播都是通过递归来完成的):

  至于反向传播函数back_propagation,由于其函数结构相对复杂,我们将对反向传播函数的解读放在后续介绍BP算法的博文中,这个系类博客的前三分之一的篇幅都是先分析tiny_cnn的前向传播过程,因此这里针对back_propagation()函数暂时先挖下一个大坑,等待后续的博文来填,望大家谅解。

  OK,这篇博客就先介绍到这里,至此我们已经对partial_connected_layer类的大部分成员变量和功能函数(除了反向传播算法)都介绍完毕,在下一篇博文中我们将继续对更底层的基类:layer、layer_base进行简要分析,然后就开始研究卷积网络的前向传播实现方法,大家敬请期待吧。

  三、注意事项

  1、函数调用格式以及构造流程的问题

  这里需要强调一点的是tiny_cnn在构造整个网络结构的过程中,是采用一种类似于“流”的形式来完成的构造:

  这种流操作方式定义在network类中,有关这种流构造技巧的更多详细信息我会在介绍network类的过程中来专门进行详细的介绍(又是一个坑),目前已知的就是这种流操作方式在表面上是一次性完成整个网络结构的构造,这也给我们在程序调试中查看中间层的网络初始化参数带来了麻烦,看看后续怎么解决吧。



如果觉得这篇文章对您有所启发,欢迎关注我的公众号,我会尽可能积极和大家交流,谢谢。


这篇关于C++卷积神经网络实例:tiny_cnn代码详解(9)——partial_connected_layer层结构类分析(下)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115502

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1