C++卷积神经网络实例:tiny_cnn代码详解(7)——fully_connected_layer层结构类分析

本文主要是介绍C++卷积神经网络实例:tiny_cnn代码详解(7)——fully_connected_layer层结构类分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  之前的博文中已经将卷积层、下采样层进行了分析,在这篇博文中我们对最后一个顶层层结构fully_connected_layer类(全连接层)进行分析:

  一、卷积神经网路中的全连接层

  在卷积神经网络中全连接层位于网络模型的最后部分,负责对网络最终输出的特征进行分类预测,得出分类结果:

  LeNet-5模型中的全连接层分为全连接和高斯连接,该层的最终输出结果即为预测标签,例如这里我们需要对MNIST数据库中的数据进行分类预测,其中的数据一共有10类(数字0~9),因此全全连接层的最终输出就是一个10维的预测结果向量,哪一维的值为非零,则预测结果对应的就是几。

  二、fully_connected_layer类结构

  与之前卷积层和下采样层不同的是,这里的全连接层fully_connected_layer类继承自基类layer,其中类成员一共可分为四大部分:成员变量、构造函数、前向传播函数、反向传播函数。

  2.1 成员变量

  fully_connected_layer类的成员变量只有一个,就是一个Filter类型的变量:

  而这里的Filter是通过类模板参数传入的一个缺省filter_none类型,具体如下:

  至于filter_none类型,从名称判断应该是一个和滤波器核相关的类封装,具体定义在dropout.h文件中:

  有关dropout.h文件中封装的相关类的详细信息我会在之后的博文中进行详细的介绍,这里先留一个坑,不过事先透漏一点,卷积神经网络中的dropout本质上是为了改善网络过拟合性能而设计的。

  2.2 构造函数

  构造函数极其简单,单纯的调用了基类layer的构造函数:

  至于基类layer,里面封装了大量的虚函数以及纯虚函数,并给出了网络层基本的框架设定,对layer_base类进行了一部分实例化,这几点我们以后会详细说的。

  2.3 前向传播函数

  众所周知,卷积神经网络在训练时和BP神经网络的训练极其相似,包括一个样本预测的前向传播过程和误差的反向传播过程。首先前向传播函数的代码如下:

        const vec_t& forward_propagation(const vec_t& in, size_t index) {vec_t &a = a_[index];vec_t &out = output_[index];for_i(parallelize_, out_size_, [&](int i) {a[i] = 0.0;for (int c = 0; c < in_size_; c++)a[i] += W_[c*out_size_ + i] * in[c];a[i] += b_[i];});for_i(parallelize_, out_size_, [&](int i) {out[i] = h_.f(a, i);});auto& this_out = filter_.filter_fprop(out, index);return next_ ? next_->forward_propagation(this_out, index) : this_out;}

  从代码中可以看出这个前向传播函数本质上属于一个递归函数,用递归的方式实现层层传播的功能:

  在前向传播的过程中,主要有两个阶段,一是通过当前层的卷积核和偏置完成对输入数据的映射:

  从代码中可见,卷积层的映射过程本质上就是一个卷积操作,然后在对卷积结果累加偏置。第二个阶段就是将卷积层的映射结果送入激活函数中进行处理:

  激活函数的主要作用是对卷积层的映射输出进行规范化,调整期数据分布。经典的激活函数是Sigmoid函数,主要对输出特征进行平滑。在之后学者又提出Relu类型的激活函数,主要是对输出特征进行稀疏化规范,使其更接近于人脑的视觉映射机理。在tiny_cnn中作者封装了sigmoid、relu、leaky_relu、softmax、tan_h、tan_hp1m2等激活函数,这些类都定义在activation命名空间中,具体在activation_function.h文件中,在后续的篇幅中我会专门拿出一篇博文的篇幅对tiny_cnn的激活函数做集中的分析。

  2.4 反向传播函数

  反向传播算法是BP类型神经网络的经典特征,大部分都采用随机梯度下降法对误差进行求导和传播。由于反向传播算法涉及到误差的求偏导、灵敏度传递等概念,导致其在原理上相对于前向传播过程显得更为复杂,代码实现也较为繁琐,我们这里只是先给出反向传播的代码,在后续的博文中在针对这个传播过程进行更文详细的分析,OK,又是一个坑:

    const vec_t& back_propagation(const vec_t& current_delta, size_t index) {const vec_t& curr_delta = filter_.filter_bprop(current_delta, index);const vec_t& prev_out = prev_->output(index);const activation::function& prev_h = prev_->activation_function();vec_t& prev_delta = prev_delta_[index];vec_t& dW = dW_[index];vec_t& db = db_[index];for (int c = 0; c < this->in_size_; c++) {// propagate delta to previous layer// prev_delta[c] += current_delta[r] * W_[c * out_size_ + r]prev_delta[c] = vectorize::dot(&curr_delta[0], &W_[c*out_size_], out_size_);prev_delta[c] *= prev_h.df(prev_out[c]);}for_(parallelize_, 0, out_size_, [&](const blocked_range& r) {// accumulate weight-step using delta// dW[c * out_size + i] += current_delta[i] * prev_out[c]for (int c = 0; c < in_size_; c++)vectorize::muladd(&curr_delta[0], prev_out[c], r.end() - r.begin(), &dW[c*out_size_ + r.begin()]);for (int i = r.begin(); i < r.end(); i++) db[i] += curr_delta[i];});return prev_->back_propagation(prev_delta_[index], index);}

  四、注意事项

  1、卷积层和下采样层的前向/反向传播函数

  在fully_connected_layer类中我们发现其内部封装了前向/反向传播函数,但在之前介绍的卷积层和均值下采样层中我们并没有发现前向/反向传播函数的影子,但前向/反向传播函数确实是一个全局的过程,不可能出现断层,因此仔细研究就会发现原来作者是将convolutional_layer类和average_pooling_layer对应的前向/反向传播函数封装在了它们共同的基类:partial_connected_layer中了。

  2、前向传播函数和反向传播函数

  在这篇博文中我为后续的博文中挖下了很多大坑,尤其像前向/反向传播函数这种卷积神经网络训练的精华部分,是最能体现作者编程功力和框架设计功力的地方,一两篇博文都不一定能讲的清楚,所以请大家不要着急,我会尽快把其中的玄机弄明白,然后用通俗的语言进行解释的,所以说,坑一定会都一一填上的。



如果觉得这篇文章对您有所启发,欢迎关注我的公众号,我会尽可能积极和大家交流,谢谢。


这篇关于C++卷积神经网络实例:tiny_cnn代码详解(7)——fully_connected_layer层结构类分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1115500

相关文章

Redis中的Lettuce使用详解

《Redis中的Lettuce使用详解》Lettuce是一个高级的、线程安全的Redis客户端,用于与Redis数据库交互,Lettuce是一个功能强大、使用方便的Redis客户端,适用于各种规模的J... 目录简介特点连接池连接池特点连接池管理连接池优势连接池配置参数监控常用监控工具通过JMX监控通过Pr

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

MySQL 添加索引5种方式示例详解(实用sql代码)

《MySQL添加索引5种方式示例详解(实用sql代码)》在MySQL数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中,下面给大家分享MySQL添加索引5种方式示例详解(实用sql代码),... 在mysql数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中。索引可以在创建表时定义,也可

C++ RabbitMq消息队列组件详解

《C++RabbitMq消息队列组件详解》:本文主要介绍C++RabbitMq消息队列组件的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. RabbitMq介绍2. 安装RabbitMQ3. 安装 RabbitMQ 的 C++客户端库4. A

MySQL 存储引擎 MyISAM详解(最新推荐)

《MySQL存储引擎MyISAM详解(最新推荐)》使用MyISAM存储引擎的表占用空间很小,但是由于使用表级锁定,所以限制了读/写操作的性能,通常用于中小型的Web应用和数据仓库配置中的只读或主要... 目录mysql 5.5 之前默认的存储引擎️‍一、MyISAM 存储引擎的特性️‍二、MyISAM 的主

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元

Linux lvm实例之如何创建一个专用于MySQL数据存储的LVM卷组

《Linuxlvm实例之如何创建一个专用于MySQL数据存储的LVM卷组》:本文主要介绍使用Linux创建一个专用于MySQL数据存储的LVM卷组的实例,具有很好的参考价值,希望对大家有所帮助,... 目录在Centos 7上创建卷China编程组并配置mysql数据目录1. 检查现有磁盘2. 创建物理卷3. 创

mybatis的mapper对应的xml写法及配置详解

《mybatis的mapper对应的xml写法及配置详解》这篇文章给大家介绍mybatis的mapper对应的xml写法及配置详解,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录前置mapper 对应 XML 基础配置mapper 对应 xml 复杂配置Mapper 中的相

Python实现一键PDF转Word(附完整代码及详细步骤)

《Python实现一键PDF转Word(附完整代码及详细步骤)》pdf2docx是一个基于Python的第三方库,专门用于将PDF文件转换为可编辑的Word文档,下面我们就来看看如何通过pdf2doc... 目录引言:为什么需要PDF转Word一、pdf2docx介绍1. pdf2docx 是什么2. by

MySQL 事务的概念及ACID属性和使用详解

《MySQL事务的概念及ACID属性和使用详解》MySQL通过多线程实现存储工作,因此在并发访问场景中,事务确保了数据操作的一致性和可靠性,下面通过本文给大家介绍MySQL事务的概念及ACID属性和... 目录一、什么是事务二、事务的属性及使用2.1 事务的 ACID 属性2.2 为什么存在事务2.3 事务