C++卷积神经网络实例:tiny_cnn代码详解(5)——convolutional_layer类结构信息之其他成员函数

本文主要是介绍C++卷积神经网络实例:tiny_cnn代码详解(5)——convolutional_layer类结构信息之其他成员函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  在上一篇博客中我们介绍了convolutional_layer类的基本结构及其成员变量、构造函数的相关信息,在这篇博文中我们对其中剩余的其他成员函数进行分析。首先把convolutional_layer类的结构图给出来:

  可见,convolutional_layer类除了构造函数之外,还有另外两部分成员函数,一部分负责定义当前卷积层与前一层之间的连接关系,另一部分则完成convolutional_layer类的剩余辅助功能,例如返回相关属性、将权重矩阵和输出矩阵转换为图像格式输出等等。

  一、层间连接规划函数

  这部分函数主要负责定义连接矩阵,来设计卷积层与前一层之间的连接关系,主要包含两个函数和一个结构体类型,接下来它们进行一一介绍。

  1.1 connection_table结构体

  connection_table结构体实际上就是层间连接矩阵的基本原型,主要功能就是根据传入的参数来构建指定的连接矩阵。这个结构体提供了两个构造函数。其中一个构造函数算是缺省构造函数,另一个需要外部传入连接矩阵和对应矩阵的行数和列数:

  第一个构造函数没啥可说的,就是默认生成一个空的连接矩阵(rows_ == 0 && cols_ == 0),另一个构造函数则本质上完成一个复制操作,通过标准库中的copy实现将用户自定义的连接矩阵传入connection_table内部:

        connection_table(const bool *ar, size_t rows, size_t cols) : connected_(rows * cols), rows_(rows), cols_(cols) {std::copy(ar, ar + rows * cols, connected_.begin());    //拷贝对应的连接标志位}

  此外connection_table结构体中还用另外两个成员函数is_connected()和is_empty()函数。is_connected()的函数体如下:

        bool is_connected(size_t x, size_t y) const                 {return is_empty() ? true : connected_[y * cols_ + x];   //这里空connection_table默认为全连接}

  is_connected()函数的功能是判断当前坐标(size_t x, size_t y)下的连接情况。举个例子,在主程序中我们人工定义了一个层间连接矩阵:

  这个连接是遵循LeNet-5中第二卷积层与前一层的连接形式,这是一个6行16列矩阵,说明前一层的输出特征矩阵有6个、本层的卷积模板有16个,矩阵中“0”代表连接,“X”代表不连接,接下来举例分析一下这个矩阵的实际意义。比如,矩阵的第1行第2列为“0”,说明前一层的第一个输出特征矩阵和本层的第一个卷积核模板是连接的;再举个例子,矩阵中的第5行第6列为“X”,说明前一层的第5个输出特征矩阵和本层的第6个卷积模板是不连接的,没错,这个连接矩阵就是这个含义。而is_connected()这个函数的作用就是根据前一层和本层的索引来读取连接矩阵中对应的值(true or false)。

  至于is_empty()函数,作用只有一个:判断当前矩阵是否为零阵:

        bool is_empty() const {return rows_ == 0 && cols_ == 0;}

  1.2 connect_kernel函数

  connect_kernel()函数的作用是初始化卷积层的卷积核参数:

  1.3 init_connection函数

  init_connection()是初始化该卷积层的映射参数,包括卷积核权重和偏置,其中初始化卷积核权重是通过调用connect_kernel()函数来实现,初始化加性偏置则直接通过代码实现:

  二、其他函数

  接下来针对convolutional_layer类中的剩余成员函数做一下扫尾工作,主要包含weight_to_image()函数和一些属性返回函数。

  2.1 weight_to_image函数

  这个函数的作用是将该层卷积层中的卷积核权重转换成图像形式进行可视化显示。之所以添加这个函数,是因为在实际实验中经常需要将中间卷积层的卷积核权重进行输出,来判断网络的收敛情况、学习进度,同时借助卷积核来对卷积神经网络的特征提取原理做一些深入性的研究。这个函数大致可以分为两部分,首先需要对图像填充,然后在进行转换,在转换过程中涉及到工程中自定义中的image.h模块,有关image模块会在后续的博文中进行详细讲解。

  2.2 属性返回函数

  convolutional_layer类的最后一个部分,属性返回函数,顾名思义,返回类成员属性:

  三、注意事项

  1、连接矩阵的本质属性

  在这里需要稍稍纠正一个说法问题,在上文中我们一直说“连接矩阵”,其实这里的连接矩阵本质上并不是Mat类型的矩阵,而是存储一系列布尔值的vector变量,具体上图:

  至于connection变量,在connection_table结构体的内部给出了更为直接的定义:

  2、is_connected()函数实现

  is_connected()函数虽然功能很简单,但是其实现起来还是有一点小麻烦,比如说其主要的功能实现部分的代码:

  故名思议,如果矩阵为零阵,返回ture,否则按索引值返回,问题是这里的connected_变量是一个vector而非中规中矩的二维矩阵,因此我们要通过人工定义的列数(cols_)来辅助完成定位(y * cols_ + x)。

  3、“0”代表连接、“X”代表不连接

  这通过一个宏定义来实现:

  4、卷积网路的基本属性

  这篇博文中提到了很多卷积神经网络中的专用术语,例如卷积核权重、加性偏执、全连接等等,有关卷积神经网络的基本原理可以参考之前我上传的一个牛人写的PPT,我当时读完之后,受益良多。



如果觉得这篇文章对您有所启发,欢迎关注我的公众号,我会尽可能积极和大家交流,谢谢。


这篇关于C++卷积神经网络实例:tiny_cnn代码详解(5)——convolutional_layer类结构信息之其他成员函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115498

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法