差分约束问题

2024-08-28 16:36
文章标签 问题 差分 约束

本文主要是介绍差分约束问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

差分约束

  • 概念及解法
  • 一些题目

概念及解法

  引用自OI Wiki

差分约束系统是一种特殊的 n 元一次不等式组,它包含 n 个变量 x 1 , x 2 , … , x n x_1,x_2,\dots,x_n x1,x2,,xn 以及 m 个约束条件,每个约束条件是由两个其中的变量做差构成的,形如 x i − x j ≤ c k x_i-x_j\leq c_k xixjck,其中 1 ≤ i , j ≤ n , i ≠ j , 1 ≤ k ≤ m 1 \leq i, j \leq n, i \neq j, 1 \leq k \leq m 1i,jn,i=j,1km 并且 c k c_k ck 是常数(可以是非负数,也可以是负数)。我们要解决的问题是:求一组解 x 1 = a 1 , x 2 = a 2 , … , x n = a n x_1=a_1,x_2=a_2,\dots,x_n=a_n x1=a1,x2=a2,,xn=an,使得所有的约束条件得到满足,否则判断出无解。

差分约束系统中的每个约束条件 x i − x j ≤ c k x_i-x_j\leq c_k xixjck 都可以变形成 x i ≤ x j + c k x_i\leq x_j+c_k xixj+ck,这与单源最短路中的三角形不等式 d i s t [ y ] ≤ d i s t [ x ] + w dist[y]\leq dist[x]+w dist[y]dist[x]+w 非常相似。因此,我们可以把每个变量 x i x_i xi 看做图中的一个结点,对于每个约束条件 x i − x j ≤ c k x_i-x_j\leq c_k xixjck,从结点 j 向结点 i 连一条长度为 c k c_k ck 的有向边。

注意到,如果 { a 1 , a 2 , … , a n } \{a_1,a_2,\dots,a_n\} {a1,a2,,an} 是该差分约束系统的一组解,那么对于任意的常数 d, { a 1 + d , a 2 + d , … , a n + d } \{a_1+d,a_2+d,\dots,a_n+d\} {a1+d,a2+d,,an+d} 显然也是该差分约束系统的一组解,因为这样做差后 d 刚好被消掉。

  一般使用Bellman–Ford / SPFA判断图中是否存在负环,最坏时间复杂度为 O(mn),不存在负环时 { d i s t [ 1 ] , d i s t [ 2 ] , … , d i s t [ n ] } \{dist[1],dist[2],\dots,dist[n]\} {dist[1],dist[2],,dist[n]}就是一组解。

一些题目

  UVa11671 Sign of Matrix
  有一个n*n(2≤n≤100)的全零矩阵,每次可以把某一行的所有元素加1或减1,也可以把某一列的所有元素加1或减1。操作之后每个元素的正负号已知,问:至少需要多少次操作?无解输出-1。例如,要达到下图中的正负号矩阵,至少需要3次操作。
Sign of Matrix
  将行列当成结点,一共2n个结点,根据每个元素的符号建立有向边约束,跑SPFA如果有负圈则无解,否则将数组d排序,把中位数d[n-1]当成0, ∑ i = 0 2 n − 1 a b s ( d [ i ] − d [ n − 1 ] ) \sum_{i=0}^{2n-1} abs( d[i]-d[n-1]) i=02n1abs(d[i]d[n1])就是答案。

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;#define N 202
struct {int v, w;} g[N][N>>1]; int c[N], d[N], f[N], cnt[N], q[N*N], n, kase = 0;bool cycle() {int head = 0, tail = n;for (int i=0; i<n; ++i) cnt[i] = d[i] = 0, f[i] = 1, q[i] = i;while (head < tail) {int u = q[head++]; f[u] = 0;for (int i=0; i<c[u]; ++i) {int v = g[u][i].v, d1 = d[u] + g[u][i].w;if (d[v] > d1) {d[v] = d1;if (++cnt[v] >= n) return true;if (!f[v]) q[tail++] = v, f[v] = 1;}}}return false;
}int solve() {memset(c, 0, sizeof(c));for (int i=0; i<n; ++i) for (int j=0; j<n; ++j) {char x; cin >> x;if (x == '+') g[j+n][c[j+n]++] = {i, -1};else if (x == '-') g[i][c[i]++] = {j+n, -1};else g[j+n][c[j+n]++] = {i, 0}, g[i][c[i]++] = {j+n, 0};}n <<= 1;if (cycle()) return -1;sort(d, d+n);int cc = 0, h = (n>>1)-1;for (int i=0; i<n; ++i) cc += abs(d[i]-d[h]);return cc;
}int main() {ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);while (cin >> n && n > 0) cout << "Case " << ++kase << ": " << solve() << endl;return 0;
}

  UVa1516/LA5906 Smoking gun
  本题和一般的差分约束不太一样,一般的差分约束不等式带等号,无解等价于有向图存在负权圈,这里差分约束不带等号,那么0权圈也是无解的。可以用Floyd算法处理,有0权圈或负权圈(即w[i][i]≤0)则无解。

这篇关于差分约束问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115304

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

nginx中端口无权限的问题解决

《nginx中端口无权限的问题解决》当Nginx日志报错bind()to80failed(13:Permissiondenied)时,这通常是由于权限不足导致Nginx无法绑定到80端口,下面就来... 目录一、问题原因分析二、解决方案1. 以 root 权限运行 Nginx(不推荐)2. 为 Nginx

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原