Ubuntu16.04安装Nvidia驱动cuda,cudnn和tensorflow-gpu

2024-08-28 11:32

本文主要是介绍Ubuntu16.04安装Nvidia驱动cuda,cudnn和tensorflow-gpu,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 本文个人博客地址: 点击查看
  • 之前有在阿里云GPU服务器上弄过: 点击查看, 这里从装Nvidia开始

一、 安装Nvidia驱动

1.1 查找需要安装的Nvidia版本

1.1.1 官网
  • 官网上查找: https://www.nvidia.com/Download/index.aspx?lang=en-us
    • 这里是 GeForce GTX 1080 TI
    • 如下图,推荐 410 版本的

GPU对应nvidia版本

GPU对应驱动版本

1.1.2 命令行查看推荐驱动
  • 查看驱动:ubuntu-drivers devices, 如下图
ubuntu@ubuntu-System-Product-Name:~$ ubuntu-drivers devices
== cpu-microcode.py ==
driver   : intel-microcode - distro free== /sys/devices/pci0000:00/0000:00:01.0/0000:01:00.0 ==
vendor   : NVIDIA Corporation
modalias : pci:v000010DEd00001B06sv00001458sd0000374Dbc03sc00i00
driver   : nvidia-410 - third-party free recommended
driver   : nvidia-384 - distro non-free
driver   : xserver-xorg-video-nouveau - distro free builtin
driver   : nvidia-390 - third-party free
driver   : nvidia-396 - third-party free
  • 注意这里添加了ppa, 若是没有,可能最新的只有nvidia-384, 但是若想安装cuda-9.0 需要大于384.81, 不然后面安装tensorflow-gpu 之后也会报错
    • 图片对应网址:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

cuda版本对应nvidia版本

  • 添加 ppa:
    • sudo add-apt-repository ppa:graphics-drivers/ppa (注意联网,去掉代理)
    • sudo apt update
  • 然后执行ubuntu-drivers devices就可以看到如上的结果
  • 安装:
    • 可能需要的依赖:sudo apt install dkms build-essential linux-headers-generic
    • 有些可能需要禁用nouveau模块,查看:https://blog.csdn.net/u012235003/article/details/54575758
    • sudo apt-get install linux-headers-$(uname -r)
    • sudo apt install nvidia-410
    • 重启机器
  • 查看:
    • nvidia-smi
    • 显示如下结果
(wangyongzhi_ml) ubuntu@ubuntu-System-Product-Name:/usr/local/cuda-10.0/bin$ nvidia-smi
Thu Oct 25 15:49:46 2018
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 410.66       Driver Version: 410.66       CUDA Version: 10.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce GTX 108...  Off  | 00000000:01:00.0  On |                  N/A |
|  0%   44C    P8    20W / 250W |     42MiB / 11174MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   1  GeForce GTX 108...  Off  | 00000000:02:00.0 Off |                  N/A |
|  0%   50C    P8    20W / 250W |      2MiB / 11178MiB |      0%      Default |
+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0       949      G   /usr/lib/xorg/Xorg                            39MiB |
+-----------------------------------------------------------------------------+

二、安装cuda

  • 官网: https://developer.nvidia.com/cuda-toolkit-archive
  • 选择想要安装的版本,这里选择的是cuda-9.0, 下载
  • 安装
    • chmod +x cuda_9.0.176_384.81_linux-run
    • sudo ./cuda_9.0.176_384.81_linux-run
    • 根据提示安装选择即可
    • 添加环境变量
      • vim ~/.bashrc
      • 加入环境变量
# cuda9.0
export PATH=/usr/local/cuda-9.0/bin/:$PATH;
export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64/:$LD_LIBRARY_PATH;
  • 测试1
    • nvcc -V
    • 如下图,版本为V9.0.176
(wangyongzhi_ml) ubuntu@ubuntu-System-Product-Name:~/wangyongzhi/software$ nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Sep__1_21:08:03_CDT_2017
Cuda compilation tools, release 9.0, V9.0.176
  • 测试2
    • 如果上面安装过程中选择了安装Examples, 会在 ~ 文件夹下生成测试NVIDIA_CUDA-9.0_Samples 的文件
    • 进入: cd NVIDIA_CUDA-9.0_Samples
    • make
    • 进入 NVIDIA_CUDA-9.0_Samples/bin/x86_64/linux/release 文件夹
      • 执行: ./deviceQuery, 可以看到类似如下信息
./deviceQuery Starting...CUDA Device Query (Runtime API) version (CUDART static linking)Detected 2 CUDA Capable device(s)Device 0: "GeForce GTX 1080 Ti"CUDA Driver Version / Runtime Version          10.0 / 9.0CUDA Capability Major/Minor version number:    6.1Total amount of global memory:                 11174 MBytes (11717181440 bytes)(28) Multiprocessors, (128) CUDA Cores/MP:     3584 CUDA CoresGPU Max Clock rate:                            1683 MHz (1.68 GHz)Memory Clock rate:                             5505 MhzMemory Bus Width:                              352-bitL2 Cache Size:                                 2883584 bytesMaximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layersMaximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layersTotal amount of constant memory:               65536 bytesTotal amount of shared memory per block:       49152 bytesTotal number of registers available per block: 65536Warp size:                                     32Maximum number of threads per multiprocessor:  2048Maximum number of threads per block:           1024

三、安装cudnn

  • 官网:https://developer.nvidia.com/rdp/cudnn-download
  • 选择cuda对应的版本, 我的选择如下图

cudnn版本

  • 安装
    • tar -zxvf cudnn-9.0-linux-x64-v7.3.1.20.tgz
    • 将解压得到的cuda 文件夹下的内容拷贝到对应的 /usr/local/cuda-9.0文件夹下即可

四、安装Anaconda和tensorflow-gpu

  • 官网: https://www.anaconda.com/download/#linux
  • 下载安装即可,我这里选择的是 python3.7 版本
  • 安装之后添加到环境变量:
# anaconda3
export PATH=/home/ubuntu/anaconda3/bin:$PATH
  • 创建虚拟环境,防止污染他人使用环境

    • conda create -n xxx python-3.6
    • conda install tensorflow-gpu
  • 测试

import tensorflow as tf
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
  • 打印如下信息:
2018-10-25 16:25:35.683507: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1405] Found device 0 with properties:
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.683
pciBusID: 0000:01:00.0
totalMemory: 10.91GiB freeMemory: 10.72GiB
2018-10-25 16:25:35.783459: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:897] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2018-10-25 16:25:35.783843: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1405] Found device 1 with properties:
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.683
pciBusID: 0000:02:00.0
totalMemory: 10.92GiB freeMemory: 10.76GiB
2018-10-25 16:25:35.784321: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1484] Adding visible gpu devices: 0, 1
2018-10-25 16:25:36.069610: I tensorflow/core/common_runtime/gpu/gpu_device.cc:965] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-10-25 16:25:36.069634: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971]      0 1
2018-10-25 16:25:36.069637: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] 0:   N Y
2018-10-25 16:25:36.069639: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] 1:   Y N
2018-10-25 16:25:36.069852: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1097] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 10367 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
2018-10-25 16:25:36.101498: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1097] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:1 with 10409 MB memory) -> physical GPU (device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:02:00.0, compute capability: 6.1)
Device mapping:
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1
/job:localhost/replica:0/task:0/device:GPU:1 -> device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:02:00.0, compute capability: 6.1
2018-10-25 16:25:36.134430: I tensorflow/core/common_runtime/direct_session.cc:288] Device mapping:
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1
/job:localhost/replica:0/task:0/device:GPU:1 -> device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:02:00.0, compute capability: 6.1

五、 多个cuda版本切换

  • 安装cuda-9.0 会在 /usr/local/ 目录下
    • 如下图,它会创建一个软连接指向了 /usr/local/cuda-9.0/
(wangyongzhi_ml) ubuntu@ubuntu-System-Product-Name:/usr/local$ ll
总用量 48
drwxr-xr-x 12 root root 4096 10月 25 14:51 ./
drwxr-xr-x 13 root root 4096 10月 25 09:39 ../
drwxr-xr-x  2 root root 4096 4月  21  2016 bin/
lrwxrwxrwx  1 root root   19 10月 25 00:41 cuda -> /usr/local/cuda-9.0/
drwxr-xr-x 19 root root 4096 10月 25 14:52 cuda-10.0/
drwxr-xr-x 18 root root 4096 10月 25 00:41 cuda-9.0/
drwxr-xr-x  2 root root 4096 4月  21  2016 etc/
drwxr-xr-x  2 root root 4096 4月  21  2016 games/
drwxr-xr-x  2 root root 4096 4月  21  2016 include/
drwxr-xr-x  4 root root 4096 4月  21  2016 lib/
lrwxrwxrwx  1 root root    9 10月 24 14:52 man -> share/man/
drwxr-xr-x  2 root root 4096 4月  21  2016 sbin/
drwxr-xr-x  8 root root 4096 4月  21  2016 share/
drwxr-xr-x  2 root root 4096 4月  21  2016 src/
  • 所以正常安装cuda 其他版本,然后创建软连接指向对应的版本即可
sudo rm -rf cuda
sudo ln -s /usr/local/cuda-10.0 /usr/local/cuda

Reference

  • https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

  • https://blog.csdn.net/u012235003/article/details/54575758

这篇关于Ubuntu16.04安装Nvidia驱动cuda,cudnn和tensorflow-gpu的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114638

相关文章

RabbitMQ 延时队列插件安装与使用示例详解(基于 Delayed Message Plugin)

《RabbitMQ延时队列插件安装与使用示例详解(基于DelayedMessagePlugin)》本文详解RabbitMQ通过安装rabbitmq_delayed_message_exchan... 目录 一、什么是 RabbitMQ 延时队列? 二、安装前准备✅ RabbitMQ 环境要求 三、安装延时队

linux系统上安装JDK8全过程

《linux系统上安装JDK8全过程》文章介绍安装JDK的必要性及Linux下JDK8的安装步骤,包括卸载旧版本、下载解压、配置环境变量等,强调开发需JDK,运行可选JRE,现JDK已集成JRE... 目录为什么要安装jdk?1.查看linux系统是否有自带的jdk:2.下载jdk压缩包2.解压3.配置环境

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

Python库 Django 的简介、安装、用法入门教程

《Python库Django的简介、安装、用法入门教程》Django是Python最流行的Web框架之一,它帮助开发者快速、高效地构建功能强大的Web应用程序,接下来我们将从简介、安装到用法详解,... 目录一、Django 简介 二、Django 的安装教程 1. 创建虚拟环境2. 安装Django三、创

linux安装、更新、卸载anaconda实践

《linux安装、更新、卸载anaconda实践》Anaconda是基于conda的科学计算环境,集成1400+包及依赖,安装需下载脚本、接受协议、设置路径、配置环境变量,更新与卸载通过conda命令... 目录随意找一个目录下载安装脚本检查许可证协议,ENTER就可以安装完毕之后激活anaconda安装更

Jenkins的安装与简单配置过程

《Jenkins的安装与简单配置过程》本文简述Jenkins在CentOS7.3上安装流程,包括Java环境配置、RPM包安装、修改JENKINS_HOME路径及权限、启动服务、插件安装与系统管理设置... 目录www.chinasem.cnJenkins安装访问并配置JenkinsJenkins配置邮件通知

Win10安装Maven与环境变量配置过程

《Win10安装Maven与环境变量配置过程》本文介绍Maven的安装与配置方法,涵盖下载、环境变量设置、本地仓库及镜像配置,指导如何在IDEA中正确配置Maven,适用于Java及其他语言项目的构建... 目录Maven 是什么?一、下载二、安装三、配置环境四、验证测试五、配置本地仓库六、配置国内镜像地址

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也