基于Python的机器学习系列(14):随机森林(Random Forests)

2024-08-28 09:44

本文主要是介绍基于Python的机器学习系列(14):随机森林(Random Forests),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

        在上一节中,我们探讨了Bagging方法,并了解到通过构建多个树模型来减少方差是有效的。然而,Bagging方法中树与树之间仍然可能存在一定的相关性,降低了方差减少的效果。为了解决这个问题,我们引入了随机森林(Random Forests),这是一种基于Bagging的增强技术,通过在每个树的每个分割点上随机选择特征来进一步减少树之间的相关性。

1. Out of Bag (OOB) 评价

        在Bagging方法中,每棵树仅看到训练数据的一个子集。未被某棵树看到的数据被称为“袋外”(Out of Bag, OOB)数据。由于OOB数据对这棵树来说是完全陌生的,我们可以将其视为一种验证集,用来评估模型的性能。具体来说,在训练每棵树后,我们可以使用这棵树的OOB数据来测试其准确性,然后平均所有树的OOB准确性,得到整体模型的OOB评价分数。

2. 随机特征子集

        随机森林通过Bagging方法构建,但在每棵树的每个分割点上,只考虑特定数量的随机特征子集进行分裂。这样可以进一步去除树之间的相关性。通常,分类树中使用的随机特征子集大小为特征总数的平方根。

3. 特征重要性

        随机森林中的每棵决策树都可以计算每个特征对减少不纯度的贡献,并对所有树中的特征重要性进行平均,得到最终的特征重要性排序。这种方法可以帮助我们理解哪些特征在模型中最为重要。

4. 从零开始的实现

代码示例

# 引入必要的库
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target# 分割训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, shuffle=True, random_state=42)# 实现RandomForest类
import random, math
from sklearn.tree import DecisionTreeClassifier
from scipy import statsclass RandomForest:def __init__(self, B, bootstrap_ratio, with_no_replacement=True):self.B = Bself.bootstrap_ratio = bootstrap_ratioself.with_no_replacement = with_no_replacementself.tree_params = {'max_depth': 2, 'max_features': 'sqrt'}self.models = [DecisionTreeClassifier(**self.tree_params) for _ in range(B)]def fit(self, X, y):m, n = X.shapesample_size = int(self.bootstrap_ratio * len(X))xsamples = np.zeros((self.B, sample_size, n))ysamples = np.zeros((self.B, sample_size))xsamples_oob = []ysamples_oob = []for i in range(self.B):oob_idx = []idxes = []for j in range(sample_size):idx = random.randrange(m)if (self.with_no_replacement):while idx in idxes:idx = random.randrange(m)idxes.append(idx)oob_idx.append(idx)xsamples[i, j, :] = X[idx]ysamples[i, j] = y[idx]mask = np.zeros((m), dtype=bool)mask[oob_idx] = Truexsamples_oob.append(X[~mask])ysamples_oob.append(y[~mask])oob_score = 0print("======Out of bag score for each tree======")for i, model in enumerate(self.models):_X = xsamples[i]_y = ysamples[i]model.fit(_X, _y)_X_test = np.asarray(xsamples_oob[i])_y_test = np.asarray(ysamples_oob[i])yhat = model.predict(_X_test)oob_score += accuracy_score(_y_test, yhat)print(f"Tree {i}", accuracy_score(_y_test, yhat))self.avg_oob_score = oob_score / len(self.models)print("======Average out of bag score======")print(self.avg_oob_score)def predict(self, X):predictions = np.zeros((self.B, X.shape[0]))for i, model in enumerate(self.models):yhat = model.predict(X)predictions[i, :] = yhatreturn stats.mode(predictions)[0][0]model = RandomForest(B=5, bootstrap_ratio=0.8)
model.fit(X_train, y_train)
yhat = model.predict(X_test)
print(classification_report(y_test, yhat))

5. Sklearn 实现

# 使用Sklearn中的RandomForestClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCVparam_grid = {"n_estimators": [10, 50, 100], "criterion": ["gini", "entropy"],"max_depth": np.arange(1, 10)}
model = RandomForestClassifier()grid = GridSearchCV(model, param_grid, refit=True)
grid.fit(X_train, y_train)print(grid.best_params_)yhat = grid.predict(X_test)print(classification_report(y_test, yhat))

使用随机森林的时机

优点:

  • 通过投票机制减少过拟合
  • 可以并行计算,提高计算效率
  • 适用于高维数据
  • 提供特征重要性评估
  • 能够处理缺失数据
  • 适用于不平衡数据集
  • 能够解决分类和回归问题

缺点:

  • 对回归问题效果不如分类问题
  • 随机森林模型较为复杂,解释性较差
  • 对稀有特征或结果不敏感
  • 在某些情况下,更多的样本并不会提高准确性

        在处理结构化数据时,如果你追求高准确性而不太关心可解释性,随机森林是一个很好的选择。

结语

        随机森林作为一种集成学习方法,通过结合多棵决策树并进行投票或平均来提高模型的准确性和鲁棒性。它不仅能有效地减少单一决策树容易出现的过拟合问题,还能够处理高维数据和不平衡数据集,提供有价值的特征重要性评估。尽管随机森林在某些情况下可能缺乏深度解释性,但其强大的预测能力使其在实际应用中广受欢迎。总之,随机森林是一种灵活且强大的工具,尤其适合在对解释性要求不高的情况下追求高准确性的任务。

如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!

欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。

谢谢大家的支持!

这篇关于基于Python的机器学习系列(14):随机森林(Random Forests)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114409

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too