IGE-LIO:充分利用强度信息克服激光退化场景下的定位精度

本文主要是介绍IGE-LIO:充分利用强度信息克服激光退化场景下的定位精度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

更多优质内容,请关注公众号:智驾机器人技术前线

1.论文信息

  • 论文标题:IGE-LIO: Intensity Gradient Enhanced Tightly-Coupled LiDAR-Inertial Odometry

  • 作者:Ziyu Chen, Hui Zhu, Biao Yu, Chunmao Jiang, Chen Hua, Xuhui Fu and Xinkai Kuang

  • 作者单位:中国科学技术大学

  • 论文地址:https://ieeexplore.ieee.org/abstract/document/10643007

2.摘要

同时定位与建图(SLAM)在移动机器人的状态估计中扮演着重要角色。大多数流行的激光雷达SLAM方法仅从环境的几何结构中提取特征点,这可能导致在退化场景中的定位不准确。在本文中,我们提出了一种新颖的框架,即强度梯度增强的紧耦合激光雷达-惯性里程计(IGE-LIO)。该框架提出了一种基于激光雷达强度梯度的特征提取方法,用于精确的姿态估计,克服了激光雷达-SLAM在退化环境中面临的挑战。计算每个激光雷达点的强度梯度后,我们从纹理信息中动态提取强度边缘点(IEPs)。此外,我们还基于几何信息提取了几何平面点(GPPs)和几何边缘点(GEPs)。然后,对每种类型的特征点进行误差分析,并设计了加权函数以校正测量噪声并减轻特征提取中额外不确定性引入的偏差。随后,通过结合点到平面和点到边缘关联的残差构建了一个迭代扩展卡尔曼滤波器(IEKF)框架。最后,在室内、室外和激光雷达退化场景中进行了广泛的实验。结果表明,与现有的仅几何方法相比,我们提出的方法在鲁棒性和准确性上有了显著提高,特别是在激光雷达退化场景中。

3.主要贡献

  • 提出了一个鲁棒的LIO框架,通过迭代扩展卡尔曼滤波器紧耦合激光雷达的几何和纹理信息与IMU,用于姿态估计。该框架能够为旋转激光雷达和固态激光雷达实现最优结果;

  • 提出了一种新颖的特征提取方法,它不仅提取几何平面点和几何边缘点,还计算每个激光雷达点的强度梯度,无需校准强度值,并使用动态阈值动态选择强度边缘点;

  • 为了区分和权衡每个特征点在姿态优化中的质量,本文引入了一种新的加权函数,该函数联合融合了几何信息和强度信息,用于几何平面点、几何边缘点和强度边缘点。

4.核心思想与方法

根据几何和强度信息提取几何平面点、几何边缘点和强度边缘点。此外,使用设计好的加权函数对每种类型的特征点进行误差分析。然后,为不同类别的特征点分别计算残差,并对状态进行迭代更新,直到达到收敛。最后,将带有标签的特征点存储在全局地图中。结果表明,所提出的方法不仅在激光雷达退化场景中实现了准确、鲁棒和实时的定位和建图,而且超越了传统的激光雷达SLAM,达到了与包含视觉信息的SLAM方法相媲美的结果。

IGE-LIO架构

IGE-LIO架构

5.实验仿真验证

6.总结 && 展望

在本文中,提出了IGE-LIO,一种强度梯度增强的激光雷达-惯性融合框架,它比FAST-LIO2更加鲁棒和准确,在退化环境中与包含相机的FAST-LIVO相比达到了相当的精度水平。本文利用激光雷达的强度信息来提取额外的强度边缘点,并将激光雷达和惯性传感器的测量值融合在一个误差状态迭代卡尔曼滤波器中。大量的定量和定性实验表明,引入强度梯度和加权函数提高了LIO的准确性和鲁棒性。此外,本文展示了我们的系统在具有挑战性的场景中,包括室内、室外和激光雷达退化环境中,更加稳定和准确。未来的工作将引入后端优化和闭环检测以提高定位的全局一致性。

本文仅做学术分析,如有侵权,请联系删文!

更多优质内容,请关注公众号:智驾机器人技术前线

这篇关于IGE-LIO:充分利用强度信息克服激光退化场景下的定位精度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1113649

相关文章

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

一文详解如何使用Java获取PDF页面信息

《一文详解如何使用Java获取PDF页面信息》了解PDF页面属性是我们在处理文档、内容提取、打印设置或页面重组等任务时不可或缺的一环,下面我们就来看看如何使用Java语言获取这些信息吧... 目录引言一、安装和引入PDF处理库引入依赖二、获取 PDF 页数三、获取页面尺寸(宽高)四、获取页面旋转角度五、判断

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期