keras tensorboard的使用, 设置GPU使用的内存, 强制只使用cpu

2024-08-27 19:48

本文主要是介绍keras tensorboard的使用, 设置GPU使用的内存, 强制只使用cpu,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

强制只使用cpu:

import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"   # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"] = ""

keras2.0版本已经添加了一些贡献者的新建议,用keras调用tensorboard对训练过程进行跟踪观察非常方便了。

直接上例子:   (注意: 貌似调用tensorboard,训练速度好像被托慢了不少。其实可以记录model.fit的history对象,自己写几行代码显示 点击打开链接)

# coding: utf-8
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import SGD
from keras.utils import np_utils
import keras.callbacksimport os
import tensorflow as tf
import keras.backend.tensorflow_backend as KTF######################################
# TODO: set the gpu memory using fraction #
#####################################
def get_session(gpu_fraction=0.3):"""This function is to allocate GPU memory a specific fractionAssume that you have 6GB of GPU memory and want to allocate ~2GB"""num_threads = os.environ.get('OMP_NUM_THREADS')gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_fraction)if num_threads:return tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, intra_op_parallelism_threads=num_threads))else:return tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
KTF.set_session(get_session(0.6))  # using 60% of total GPU Memory
os.system("nvidia-smi")  # Execute the command (a string) in a subshell
raw_input("Press Enter to continue...")
######################batch_size = 128
nb_classes = 10
nb_epoch = 10
nb_data = 28 * 28
log_filepath = '/tmp/keras_log'# load data(X_train, y_train), (X_test, y_test) = mnist.load_data()# reshape
print X_train.shape
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1] * X_train.shape[2])
X_test = X_test.reshape(X_test.shape[0], X_test.shape[1] * X_test.shape[2])
# rescaleX_train = X_train.astype(np.float32)
X_train /= 255X_test = X_test.astype(np.float32)
X_test /= 255
# convert class vectors to binary class matrices (one hot vectors)Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)model = Sequential()
model.add(Dense(512, input_shape=(nb_data,), init='normal', name='dense1')) # a sample is a row 28*28
model.add(Activation('relu', name='relu1'))
model.add(Dropout(0.2, name='dropout1'))
model.add(Dense(512, init='normal', name='dense2'))
model.add(Activation('relu', name='relu2'))
model.add(Dropout(0.2, name='dropout2'))
model.add(Dense(10, init='normal', name='dense3'))
model.add(Activation('softmax', name='softmax1'))
model.summary()model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.001), metrics=['accuracy'])tb_cb = keras.callbacks.TensorBoard(log_dir=log_filepath, write_images=1, histogram_freq=1)
# 设置log的存储位置,将网络权值以图片格式保持在tensorboard中显示,设置每一个周期计算一次网络的
#权值,每层输出值的分布直方图
cbks = [tb_cb]
history = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, 
verbose=1, callbacks=cbks, validation_data=(X_test, Y_test))score = model.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy;', score[1])
其实可以自己给每一层layer命名一个name, 也可以由keras根据自己的命名规则自动取名,自动命名的规则在Layer类中,代码如下:
name = kwargs.get('name')  
if not name:  prefix = self.__class__.__name__  name = _to_snake_case(prefix) + '_' + str(K.get_uid(prefix))  
self.name = name 
而在keras的call back模块中,tensorborad class类实现源码可以看出,keras默认将模型的所有层的所有weights, bias以及每一层输出的distribution, histogram等传送到tensorborad,方便在浏览器中观察网络的运行情况。实现源码如下:

def set_model(self, model):  self.model = model  self.sess = K.get_session()  if self.histogram_freq and self.merged is None:  for layer in self.model.layers:  for weight in layer.weights:  tf.summary.histogram(weight.name, weight)  if self.write_images:  w_img = tf.squeeze(weight)  shape = w_img.get_shape()  if len(shape) > 1 and shape[0] > shape[1]:  w_img = tf.transpose(w_img)  if len(shape) == 1:  w_img = tf.expand_dims(w_img, 0)  w_img = tf.expand_dims(tf.expand_dims(w_img, 0), -1)  tf.summary.image(weight.name, w_img)  if hasattr(layer, 'output'):  tf.summary.histogram('{}_out'.format(layer.name),  layer.output)  self.merged = tf.summary.merge_all() 

当然也可以指定输出某一些层的,通过tensorboard参数进行设定:

embeddings_freq: frequency (in epochs) at which selected embedding
    layers will be saved.
embeddings_layer_names: a list of names of layers to keep eye on. If
    None or empty list all the embedding layer will be watched.

现在运行最开始的例子,在terminal运行

tensorboard --logdir=/tmp/keras_log

在terminal打开浏览器地址,进入tensorboard可以随意浏览graph, distribution, histogram, 以及sclar列表中的loss, acc等等。


以下摘录自: 这里

TensorBoard will automatically include all runs logged within the sub-directories of the specifiedlog_dir, for example, if you logged another run using:

callback_tensorboard(log_dir = "logs/run_b")

Then the TensorBoard visualization would look like this:

You can use the unique_log_dir function if you want to record every training run in it’s own directory:

callback_tensorboard(log_dir = unique_log_dir())

Once again note that it’s not required to record every training run in it’s own directory. Using the default “logs” directory will work just fine, you’ll just only be able to visualize the most recent run using TensorBoard.



需要注意的是,tensorboard默认的slcar一栏只记录了训练集和验证集上的loss,如何想记录展示其他指标,在model.compile的metric中进行添加,例如:

    model.compile(  loss = 'mean_squared_error',  optimizer = 'sgd',  metrics= c('mae', 'acc')  # 可视化mae和acc  )  



这篇关于keras tensorboard的使用, 设置GPU使用的内存, 强制只使用cpu的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112609

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca