【Keras】TimeDistributed的理解和用法

2024-08-27 18:32

本文主要是介绍【Keras】TimeDistributed的理解和用法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

之前一直在看one-stage目标定位的算法,主要是速度快。今天无聊就看下mask-rcnn的源码,了解下主要结构和训练过程。看网络图中发现了使用TimeDistributed层,平常自己没有用过这样的层,所以看官方文档和其他人的博客,发现有的博客理解的并不太正确,所以还是简单介绍下吧。只是个人理解,如有问题欢迎指出。

    TimeDistributed顾名思义就是使用时间序列来进行一系列张量操作。个人认为应该加上share这个单词,因为这个TimeDistributed都是共享权重信息的。下面进行例子验证:

应用于Dense层:

#coding:utf-8
from keras.models import Input,Model
from keras.layers import Dense,Conv2D,TimeDistributedinput_ = Input(shape=(12,8))
out = TimeDistributed(Dense(units=10))(input_)
#out = Dense(units=10)(input_)
model = Model(inputs=input_,outputs=out)
model.summary()

    一共有90个参数,8×10个weights,10个bias,序列长度一共是12个。从参数数量来看,这12个序列共享这90个训练参数,整个网络输出大小为(None,12,10)。但是这里,使用out = Dense(units=10)(input_)来代替out = TimeDistributed(Dense(units=10))(input_)也是可以的,输出和参数量都是一样的,不知道原因。

应用于Conv2D层:

from keras.models import Input,Model
from keras.layers import Dense,Conv2D,TimeDistributedinput_ = Input(shape=(12,32,32,3))
out = TimeDistributed(Conv2D(filters=32,kernel_size=(3,3),padding='same'))(input_)
model = Model(inputs=input_,outputs=out)
model.summary()

   结果为

Using TensorFlow backend.
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         (None, 12, 32, 32, 3)     0         
_________________________________________________________________
time_distributed_1 (TimeDist (None, 12, 32, 32, 32)    896       
=================================================================
Total params: 896
Trainable params: 896
Non-trainable params: 0
_________________________________________________________________

这里12代表就是时间序列(一定注意不是batch,因为他使用的是shape而不是batch_shape),32,32,3指的是高,宽,通道数。卷积操作使用TimeDistributed就相当与这12个时间序列共享一个卷积层参数信息,无论时间序列值为多少,参数总量还是一定的。此处一共有896个参数,卷积核weights有3×3×3×32=864个,卷积核bias有32个。

    TimeDistributed在mask-rcnn的用法在于:对FPN网络输出的多层卷积特征进行共享参数。因此,个人认为TimeDistributed的真正意义在于使不同层的特征图共享权重。

这篇关于【Keras】TimeDistributed的理解和用法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112441

相关文章

全面解析Golang 中的 Gorilla CORS 中间件正确用法

《全面解析Golang中的GorillaCORS中间件正确用法》Golang中使用gorilla/mux路由器配合rs/cors中间件库可以优雅地解决这个问题,然而,很多人刚开始使用时会遇到配... 目录如何让 golang 中的 Gorilla CORS 中间件正确工作一、基础依赖二、错误用法(很多人一开

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

Java Spring的依赖注入理解及@Autowired用法示例详解

《JavaSpring的依赖注入理解及@Autowired用法示例详解》文章介绍了Spring依赖注入(DI)的概念、三种实现方式(构造器、Setter、字段注入),区分了@Autowired(注入... 目录一、什么是依赖注入(DI)?1. 定义2. 举个例子二、依赖注入的几种方式1. 构造器注入(Con

详解MySQL中JSON数据类型用法及与传统JSON字符串对比

《详解MySQL中JSON数据类型用法及与传统JSON字符串对比》MySQL从5.7版本开始引入了JSON数据类型,专门用于存储JSON格式的数据,本文将为大家简单介绍一下MySQL中JSON数据类型... 目录前言基本用法jsON数据类型 vs 传统JSON字符串1. 存储方式2. 查询方式对比3. 索引

全面掌握 SQL 中的 DATEDIFF函数及用法最佳实践

《全面掌握SQL中的DATEDIFF函数及用法最佳实践》本文解析DATEDIFF在不同数据库中的差异,强调其边界计算原理,探讨应用场景及陷阱,推荐根据需求选择TIMESTAMPDIFF或inte... 目录1. 核心概念:DATEDIFF 究竟在计算什么?2. 主流数据库中的 DATEDIFF 实现2.1

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文