Linux信号处理机制基础

2024-08-27 18:04

本文主要是介绍Linux信号处理机制基础,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是信号

  • 信号在最早的UNIX系统中即被引入,已有30多年的历史,但只有很小的变化。
  • 信号是提供异步事件处理机制的软件中断
  • 进程之间可以相互发送信号,这使信号成为一种进程间通信(Inter-ProcessCommunication,lPC)的基本手段

信号的名称与编号

  • 信号是很短的消息,本质就是一个整数,用以区分代表不同事件的不同信号。为了便于记忆,在signum.h头文件中用一组名字前缀为SIG的宏来标识信号,即为信号的名字。
  • 通过kill -l命令可以查看信号
  • 一共有62个信号,其中前31个信号为不可靠的非实时信号后31个为可靠的实时信号

 常用信号

信号处理 

  • 忽略:什么也不做,SIGKILL(9)和SIGSTOP(19)不能被忽略
  • 默认:在没有人为设置的情况,系统缺省的处理行为。
  • 捕获:接收到信号的进程会暂停执行,转而执行一段事先编写好的处理代码,执行完毕后再从暂停执行的地方继续运行,

信号处理函数 

signal函数

#include <signal.h>
typedef void (*sighandler_t)(int);
sighandler_t signal(int signum, sighandler_t handler);

功能:设置调用进程针对特定信号的处理方式

参数:signum         信号编号
        handler 信号的处理方式,可以如下取值
                SIG_IGN        -忽略
                SIG_DFL       - 默认
                信号处理函数指针        -捕获 
返回值:成功返回原信号处理方式,如果之前未处理过则返回NULL,失败返回SIG_ERR

 代码演示

//信号处理
#include<stdio.h>
#include<unistd.h>
#include<signal.h>
//信号处理函数
void sigfun(int signum){printf("%d进程:捕获到%d号信号\n",getpid(),signum);}
int main(){// 对2号信号进行忽略处理//接下来程序就有了忽略2号信号的能力if(signal(SIGINT,SIG_IGN) == SIG_ERR){perror("signal");return -1;}//对2号信号进行捕捉处理if(signal(SIGINT,sigfun) == SIG_ERR){perror("signal");return -1;}// if(signal(SIGINT,SIG_DFL) == SIG_ERR){//     perror("signal");//     return -1;// }for(;;);return 0;
}

 信号处理流程

        当有信号到来时,内核会保存当前进程的栈帧,然后再执行信号处理函数。当信号处理函数结束后,内核会恢复之前保存的进程的栈帧,使之继续执行

太平间信号

        无论一个进程是正常终止还是异常终止,都会通过系统内核向其父进程发送SIGCHLD(17)信号。父进程完全可以在针对SIGCHLD(17)信号的信号处理函数中,异步地回收子进程的僵尸,简洁而又高效

        在信号处理函数执行期间,如果有多个相同的信号到来,则只保留一个,其余统统丢弃。如果我们在一次信号处理函数执行期间只进行一次收尸,就会导致漏网的僵尸。那我们又该如何对这些僵尸进程进行回收,我们可以在一次信号处理函数期间尽可能多的回收僵尸进程。此外为防止长时间等待回收子进程影响父进程的执行,我们可以采用非阻塞方式回收僵尸进程。

代码演示 

//太平间信号
#include<stdio.h>
#include<unistd.h>
#include<signal.h>
#include<sys/wait.h>
#include<errno.h>//信号捕获处理函数
void sigchild(int signum){printf("%d进程:捕获到%d号信号\n",getpid(),signum);sleep(2);//假装信号处理函数很耗时for(;;){pid_t pid = waitpid(-1,NULL,WNOHANG);if(pid == -1){if(errno == ECHILD){printf("%d进程:没有子进程了\n",getpid());break;}else{perror("waitpid");return ;}}else if(pid == 0){printf("子进程正在运行,回收不了\n");   break;}else{printf("%d进程:回收了%d进程的僵尸\n",getpid(),pid);}}
}/*for(;;){pid_t pid = wait(NULL);if(pid == -1){if(errno == ECHILD){printf("%d进程:没有子进程了\n",getpid());break;}else{perror("wait");return ;}}printf("%d进程:回收了%d进程的僵尸\n",getpid(),pid);}
}*/
int main(){if(signal(SIGCHLD,sigchild) == SIG_ERR){perror("signal");return -1;}//创建多个子进程for(int i = 0; i < 5;i++){pid_t pid = fork();if(pid == -1){perror("fork");return -1;}if(pid == 0){printf("%d进程:我是子进程\n",getpid());//sleep(1 + i);sleep(1);return 0;}}//创建老六pid_t oldsix = fork();if(oldsix == -1){perror("fork");return -1;}if(oldsix == 0){printf("%d进程:我是老六\n",getpid());sleep(15);return 0;}//父进程代码for(;;);return 0;
}

信号的继承与恢复

  • fork函数创建的子进程会继承父进程的信号处理方式
    • 父进程中对某个信号进行捕获,则子进程中对该信号依然捕获
    • 父进程中对某个信号进行忽略,则子进程中对该信号依然忽略

代码演示 

//验证子进程是否继承父进程的信号处理方式
#include <stdio.h>
#include<unistd.h>
#include<signal.h>
#include<sys/wait.h>void sigfun(int signum){printf("%d进程:捕获到%d号信号\n",getpid(),signum);
}
int main(){//忽略2号信号if(signal(SIGINT,SIG_IGN) == SIG_ERR){perror("signal");return -1;}//捕获3号信号if(signal(SIGQUIT,sigfun) == SIG_ERR){perror("signal");return -1;}//创建子进程pid_t pid = fork();if(pid == -1){perror("fork");return -1;}//子进程暂时不结束if(pid == 0){printf("%d进程:我是子进程\n",getpid());while(1){}return 0;}//父进程printf("%d进程:我是父进程\n",getpid());sleep(1);return 0;
}

 由于父子进程共用终端设备我们需要在vi上进行,开启两个窗口,向子进程发送2号和3号信号。

窗口1 
day06$./fork
18338进程:我是父进程
18339进程:我是子进程
day06$kill -2 18317
day06$
day06$kill -3 18317
day06$kill -3 18317
day06$kill -3 18317
窗口2
day06$./fork
18316进程:我是父进程
18317进程:我是子进程
day06$18317进程:捕获到3号信号
18317进程:捕获到3号信号
18317进程:捕获到3号信号
  • exec家族函数创建的新进程对信号的处理方式和原进程稍有不同
    • 原进程中被忽略的信号,在新进程中依然被忽略
    • 原进程中被捕获的信号,在新进程中被默认处理

 代码演示

execl.c

//新进程是否继承旧进程的信号处理方式
#include <stdio.h>
#include<unistd.h>
#include<signal.h>
//信号处理函数
void sigfun(int signum){printf("%d进程:捕获到%d号信号\n",getpid(),signum);return 0;
}
int main(){//忽略SIGINT信号if(signal(SIGINT,SIG_IGN) == SIG_ERR){perror("signal");return -1;}//捕获SIGQUIT信号if(signal(SIGQUIT,sigfun) == SIG_ERR){perror("signal");return -1;}//变身if(execl("./new","new",NULL) == -1){perror("execl");return -1;}return 0;
}

new.c

//变身目标
#include<stdio.h>
int main(){while(1){}return 0;
}
day06$./execl
^C^C^C^C^C^C^C^C^C^\退出 (核心已转储)
day06$

这篇关于Linux信号处理机制基础的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112386

相关文章

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

详解Linux中常见环境变量的特点与设置

《详解Linux中常见环境变量的特点与设置》环境变量是操作系统和用户设置的一些动态键值对,为运行的程序提供配置信息,理解环境变量对于系统管理、软件开发都很重要,下面小编就为大家详细介绍一下吧... 目录前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变

Go语言中Recover机制的使用

《Go语言中Recover机制的使用》Go语言的recover机制通过defer函数捕获panic,实现异常恢复与程序稳定性,具有一定的参考价值,感兴趣的可以了解一下... 目录引言Recover 的基本概念基本代码示例简单的 Recover 示例嵌套函数中的 Recover项目场景中的应用Web 服务器中

Linux系统中的firewall-offline-cmd详解(收藏版)

《Linux系统中的firewall-offline-cmd详解(收藏版)》firewall-offline-cmd是firewalld的一个命令行工具,专门设计用于在没有运行firewalld服务的... 目录主要用途基本语法选项1. 状态管理2. 区域管理3. 服务管理4. 端口管理5. ICMP 阻断

Linux实现线程同步的多种方式汇总

《Linux实现线程同步的多种方式汇总》本文详细介绍了Linux下线程同步的多种方法,包括互斥锁、自旋锁、信号量以及它们的使用示例,通过这些同步机制,可以解决线程安全问题,防止资源竞争导致的错误,示例... 目录什么是线程同步?一、互斥锁(单人洗手间规则)适用场景:特点:二、条件变量(咖啡厅取餐系统)工作流