【Python】 numpy中运算符* @ mutiply dot的用法分析

2024-08-27 17:58

本文主要是介绍【Python】 numpy中运算符* @ mutiply dot的用法分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

https://blog.csdn.net/Invokar/article/details/89532476 

引言:
最近同学在做机器学习作业时,代码中遇到了* @ np.mutiply .dot这个几个numpy的运算,发现有点晕,于是我在这里做几个简单的对比,以及列举需要注意的问题


首先先给一个比较简单的用法解释:
*:               根据数据类型的不同,可能是做点乘运算,也可能做矩阵乘法运算
@:               只做矩阵乘法运算
.dot:          只做矩阵乘法运算
np.mutiply只做点乘运算 


为了说明上述结论的正确性,下面首先对ndarray数据类型进行运算操作

In [1]: import numpy as npIn [2]: a = np.array(np.arange(4)).reshape(2,2)In [3]: b = aIn [4]: a
Out[4]:
array([[0, 1],[2, 3]])In [5]: b
Out[5]:
array([[0, 1],[2, 3]])In [6]: np.multiply(a, b)
Out[6]:
array([[0, 1],[4, 9]])In [7]: a * b
Out[7]:
array([[0, 1],[4, 9]])In [8]: a.dot(b)
Out[8]:
array([[ 2,  3],[ 6, 11]])
In [9]: a @ b
Out[9]:
array([[ 2,  3],[ 6, 11]])

如果array不是方阵,我们再运行测试,得到如下结果

In [16]: a = np.array(np.arange(6)).reshape(3,2)In [17]: a
Out[17]:
array([[0, 1],[2, 3],[4, 5]])In [18]: b = a.TIn [19]: b
Out[19]:
array([[0, 2, 4],[1, 3, 5]])In [20]: b * a
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-20-245d0d068c2b> in <module>()
----> 1 b * aValueError: operands could not be broadcast together with shapes (2,3) (3,2)In [21]: np.multiply(b, a)
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-23-bae4ae98f8ad> in <module>()
----> 1 np.multiply(b, a)ValueError: operands could not be broadcast together with shapes (2,3) (3,2)
In [22]: b.dot(a)
Out[22]:
array([[20, 26],[26, 35]])In [23]: b @ a
Out[23]:
array([[20, 26],[26, 35]])

从上面可以发现,针对ndarray而言:
* 和 np.multiply 只能做点乘运算,当运算符两边的数据维度无法满足点乘运算结果时,就会报错
@.dot 只能做矩阵乘法运算


然后再对matrix数据类型进行运算操作

In [27]: a = np.matrix(np.arange(4)).reshape(2,2)In [28]: a
Out[28]:
matrix([[0, 1],[2, 3]])In [29]: b = aIn [30]: b
Out[30]:
matrix([[0, 1],[2, 3]])In [31]: a * b
Out[31]:
matrix([[ 2,  3],[ 6, 11]])In [32]: np.multiply(a,b)
Out[32]:
matrix([[0, 1],[4, 9]])In [33]: a @ b
Out[33]:
matrix([[ 2,  3],[ 6, 11]])In [34]: a.dot(b)
Out[34]:
matrix([[ 2,  3],[ 6, 11]])
In [35]: c = np.matrix(np.arange(6)).reshape(3,2)In [36]: d = c.TIn [37]: c
Out[37]:
matrix([[0, 1],[2, 3],[4, 5]])In [38]: d
Out[38]:
matrix([[0, 2, 4],[1, 3, 5]])In [39]: np.multiply(d, c)
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-39-6c3683491fc6> in <module>()
----> 1 np.multiply(d, c)ValueError: operands could not be broadcast together with shapes (2,3) (3,2)

从上面可以发现,针对matrix而言:
* 会做矩阵乘法运算
而 np.multiply 依然只能做点乘运算,当运算符两边的数据维度无法满足点乘运算结果时,就会报错。
@.dot 依旧保持只做矩阵乘法运算


总结:
为了防止记混或者出错,有以下建议:

  1. 只使用@来做矩阵乘法运算
  2. 只使用np.multiply来做点乘运算
  3. 在使用其他框架,类似于tensorflow或者pytorch,建议先针对这四个运算法运算一遍,明白其运算逻辑再Coding!

这篇关于【Python】 numpy中运算符* @ mutiply dot的用法分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112368

相关文章

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.