【Grad-Cam】pycaffe实现

2024-08-27 17:18
文章标签 实现 cam grad pycaffe

本文主要是介绍【Grad-Cam】pycaffe实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 python获取梯度脚本

# -*- coding: UTF-8 -*-
import sys
import shutil
import os
sys.path.insert(0, "caffe/python")
import caffe
import numpy as np
import dicom
import cv2
from scipy.misc import bytescale
from matplotlib import pyplot as plt
from PIL import Image
import matplotlib.cm as cmdef process(source, IMAGE_SIZE=227):ds = dicom.read_file(source)pixel_array = ds.pixel_arrayheight, width = pixel_array.shapeif height < width:pixel_array = pixel_array[:, int((width - height) / 2):int((width + height) / 2)]else:pixel_array = pixel_array[int((height - width) / 2):int((width + height) / 2), :]im = cv2.resize(pixel_array, (IMAGE_SIZE, IMAGE_SIZE))im = bytescale(im)# im = im / 256im = np.dstack((im, im, im))im = im[:, :, [2, 1, 0]]input_im = im.transpose((2, 0, 1))return im, input_imcaffe.set_mode_cpu()net = caffe.Net("bone/alexnet_deploy.prototxt", "bone/all_alexnet_train_iter_8000.caffemodel", caffe.TEST)
net.blobs['data'].reshape(1, 3, 227, 227)## output layer
final_layer = 'my-fc8' #这是你的输出层,比如最后一层经过softmax一般喜欢叫prob,就改为prob即可
### the last conv layer or any else you want to visualize
layer_name = 'conv1'def visualize(input_im):net.blobs['data'].data[...] = input_imoutput = net.forward()predict_age = output['my-fc8'][0][0]label = np.zeros(net.blobs[final_layer].shape)label[0, 0] = predict_ageimdiff = net.backward(diffs=['data', layer_name], **{net.outputs[0]: label})gradients = imdiff[layer_name]vis_grad = np.squeeze(gradients)mean_grads = np.mean(vis_grad, axis=(1, 2))activations = net.blobs[layer_name].dataactivations = np.squeeze(activations)n_nodes = activations.shape[0] # number of nodelsvis_size = activations.shape[1:] #visualization shapevis = np.zeros(vis_size, dtype=np.float32)#generating saliency imagefor i in xrange(n_nodes):activation = activations[i, :, :]weight = mean_grads[i]weighted_activation = activation*weightvis += weighted_activation# We select only those activation which has positively contributed in prediction of given classvis = np.maximum(vis, 0)   # reluvis_img = Image.fromarray(vis, None)vis_img = vis_img.resize((227,227),Image.BICUBIC)vis_img = vis_img / np.max(vis_img)vis_img = Image.fromarray(np.uint8(cm.jet(vis_img) * 255))vis_img = vis_img.convert('RGB') # dropping alpha channelreturn vis_img### for one image
# im, input_im = process('/Users/hzzone/Downloads/data/male/11.00-11.99/15696275')
# vis_img = visualize(input_im)
# im = Image.fromarray(im)
#
# heat_map = Image.blend(im, vis_img, 0.3)
# heat_map = np.array(heat_map)
#
# plt.imsave('h1.jpg', heat_map)
# plt.imshow(heat_map)
# plt.axis('off')
# plt.show()### For a foldersave_dir = './data'
data_dir = u'/Volumes/Seagate Backup Plus Drive/深度学习数据集/盆骨'for root, dirs, files in os.walk(data_dir):for file_name in files:dicom_file = os.path.join(root, file_name)im, input_im = process(dicom_file)vis_img = visualize(input_im)im = Image.fromarray(im)heat_map = Image.blend(im, vis_img, 0.3)heat_map = np.array(heat_map)save_path = os.path.join(save_dir, root.strip(data_dir))if not os.path.exists(save_path):os.makedirs(save_path)save_path = os.path.join(save_path, file_name)print(save_path)plt.imsave(save_path, heat_map)

prototxt文件

关键:force_backward: true

name: "AlexNet"
input: "data"
input_dim: 1
input_dim: 3
input_dim: 227
input_dim: 227
force_backward: true

 参考

GitHub - Hzzone/grad-CAM-pycaffe: grad-CAM visulization technique of pycaffe, regression task of Medical Image.
https://github.com/gautamMalu/caffe-gradCAM

这篇关于【Grad-Cam】pycaffe实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112278

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库