如何解决 Compute 节点上的内存溢出(OOM)问题

2024-08-27 16:52

本文主要是介绍如何解决 Compute 节点上的内存溢出(OOM)问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

内存溢出(Out-of-memory)是数据处理系统中常见的问题,本文将分析 OOM 的各种原因并提供有效的解决方法。

RisingWave 使用像 AWS S3 这样的共享存储,并将 Compute 节点的内存用作缓存以增强流处理性能。缓存以 Least Recently Used (近期最少使用算法,LRU)的方式运作,即当内存不足时,将删除最少使用的条目。

为了获得最佳性能,建议 Compute 节点的最低内存为 8 GB,但生产环境中建议使用 16 GB 及以上。

本文重点解决 Compute 节点上的 OOM 问题。如果在其他节点上遇到 OOM,请首先升级到最新版本。如果问题仍然存在,请联系我们。

1. OOM 判断方法

Kubernetes 显示 Compute 节点 Pod 由于 OOM Killed (137) 而突然重新启动。

Grafana 指标显示内存无限增长,超出了为 Compute 节点设置的 total_memory 限制。内存设置可以在 Compute 节点的启动日志中找到。搜索关键字“Memory outline"以定位特定部分。

内存溢出判断方法

2. 创建物化视图时的 OOM

如果在创建新的物化视图时发生 OOM,可能是由上游系统(如 Kafka)中存在的大量现有数据引起的。这种情况下,在创建或重新创建物化视图之前,可以通过指定每个并行度的速率限制来减少流量:

CREATE MATERIALIZED VIEW mv WITH ( source_rate_limit = 200 ) AS 

参数 source_rate_limit 表示每个并行度在每个源上的每秒最大记录数,其中流作业的默认并行度是集群中所有 CPU 核心的总数。例如,假设一个物化视图有 4 个并行度和 2 个 Source 连接在一起,每个 Source 的吞吐量将被限制为 4 * source_rate_limit 条记录/秒。

或者,您可以使用 risectl 来更改现有物化视图的流速限制,其中 <id> 可以在 RisingWave 看板或 rw_catalog Schema 中找到。

risingwave ctl throttle source/mv <id> <source_rate_limit>

3. 屏障延迟导致的 OOM

屏障在我们的系统中发挥着关键作用,支持内存管理和 LRU 缓存等重要组件的正常运行。

从 Grafana 看板的屏障延迟面板可以观察到屏障延迟,如图所示,延迟曲线异常。
屏障延迟面板

与仅解决内存问题不同,建议关注为何屏障出现问题。可能是由繁重的流作业、输入流量的突然冲击或一些临时问题引起。

以下方法可以帮助解决此问题:

  • 在 Grafana 中,观察片段(actor)之间的背压。两个片段之间的高背压表明下游片段无法足够快地处理数据,从而减慢整个流作业的速度。
  • 在 RisingWave 看板中检查所有 Compute 节点的 Await Tree Dump。如果屏障陷入困境,Await Tree Dump 将显示屏障正在等待特定操作完成。这个片段可能是流作业的瓶颈。

不管是哪种情况,您都可以试着将更多节点添加到集群中,以增加并行度,或检查 SQL 查询语句看看是否有优化的空间。

4. 长时间批量查询时的 OOM

如果在长时间批查询期间发生 OOM,可能是由 Compute 节点上的内存使用过多而引起。在这种情况下,可以通过调整 TOML 文件中的 storage.prefetch_buffer_capacity_mb 参数来减少预取的内存使用。

参数 storage.prefetch_buffer_capacity_mb 定义了预取的最大内存。它通过预读来优化流执行器和批查询性能。此功能允许 hummock(为流计算而生的存储引擎) 在单个 I/O 操作中读取更大的数据块,但这样一来,内存成本更高。当预取操作期间的内存使用达到此限制时,hummock 将恢复到原始读取方法,以 64 KB 块处理数据。如果将参数设置为 0,则将禁用此功能。默认情况下,它设置为总机器内存的 7%。

5. 使用内存分析工具进行故障排除

如果屏障延迟正常,但内存使用仍在增加,可能需要进行内存分析以找出根本原因。

我们在 RisingWave 看板中添加了堆分析工具,以帮助您分析内存使用情况并识别与内存相关的问题。

INFO: 要启用内存分析,请为 Compute 节点设置环境变量 MALLOC_CONF=prof:true

进入 RisingWave 看板,选择 Debug > Heap Profiling。如果您正在本地机器上运行 RisingWave,可以通过 127.0.0.1:5691 访问 RisingWave 看板。

默认情况下,当内存使用达到 90% 时,heap profile 数据将自动转储,也可以选择手动转储。转储数据后,在看板内单击 Analyze,以检查内存使用模式和潜在问题,而无需离开看板界面。

6. 在社群寻求帮助

您可以关注 RisingWave 中文开源社区公众号加入中文社群,与广大用户群体一同参与讨论、寻求帮助、分享经验。

在提交问题时,请包括以下详细信息:

  • 问题摘要;
  • 重现问题的步骤;
  • 相关资源,如日志、截图、指标、堆栈转储等。

7. 关于 RisingWave

RisingWave 是一款开源的分布式流处理数据库,旨在帮助用户降低实时应用的开发成本。RisingWave 采用存算分离架构,提供 Postgres-style 使用体验,具备比 Flink 高出 10 倍的性能以及更低的成本。

👨‍🔬加入 RW 社区,欢迎关注公众号:RisingWave 中文开源社区

🧑‍💻想要了解和探索 RisingWave,欢迎浏览我们的官网:risingwave.com/

🔧快速上手 RisingWave,欢迎体验入门教程:github.com/risingwave

💻深入理解使用 RisingWave,欢迎阅读用户文档:zh-cn.risingwave.com/docs

这篇关于如何解决 Compute 节点上的内存溢出(OOM)问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112240

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

在Ubuntu上打不开GitHub的完整解决方法

《在Ubuntu上打不开GitHub的完整解决方法》当你满心欢喜打开Ubuntu准备推送代码时,突然发现终端里的gitpush卡成狗,浏览器里的GitHub页面直接变成Whoathere!警告页面... 目录一、那些年我们遇到的"红色惊叹号"二、三大症状快速诊断症状1:浏览器直接无法访问症状2:终端操作异常

mybatis直接执行完整sql及踩坑解决

《mybatis直接执行完整sql及踩坑解决》MyBatis可通过select标签执行动态SQL,DQL用ListLinkedHashMap接收结果,DML用int处理,注意防御SQL注入,优先使用#... 目录myBATiFBNZQs直接执行完整sql及踩坑select语句采用count、insert、u

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python内存管理机制之垃圾回收与引用计数操作全过程

《Python内存管理机制之垃圾回收与引用计数操作全过程》SQLAlchemy是Python中最流行的ORM(对象关系映射)框架之一,它提供了高效且灵活的数据库操作方式,本文将介绍如何使用SQLAlc... 目录安装核心概念连接数据库定义数据模型创建数据库表基本CRUD操作创建数据读取数据更新数据删除数据查

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造