怎么跳出 MySQL 的10个大坑(上)

2024-08-27 13:58

本文主要是介绍怎么跳出 MySQL 的10个大坑(上),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

编者按:淘宝自从2010开始规模使用MySQL,替换了之前商品、交易、用户等原基于IOE方案的核心数据库,目前已部署数千台规模。同时和Oracle, Percona, Mariadb等上游厂商有良好合作,共向上游提交20多个Patch。目前淘宝核心系统研发部数据库组,根据淘宝的业务需求,改进数据库和提升性能,提供高性能、可扩展的、稳定可靠的数据库(存储)解决方案。 目前有以下几个方向:单机,提升单机数据库的性能,增加我们所需特性;集群,提供性能扩展,可靠性,可能涉及分布式事务处理;IO存储体系,跟踪IO设备变化潮流, 研究软硬件结合,输出高性能存储解决方案。本文是来自淘宝内部数据库内容分享。


MySQL · 性能优化· Group Commit优化


背景


关于Group Commit网上的资料其实已经足够多了,我这里只简单的介绍一下。


众所周知,在MySQL5.6之前的版本,由于引入了Binlog/InnoDB的XA,Binlog的写入和InnoDB commit完全串行化执行,大概的执行序列如下:


 InnoDB prepare  (持有prepare_commit_mutex);<br style="margin: 0px; padding: 0px; max-width: 100%; box-sizing: border-box !important; word-wrap: break-word !important;" /> write/sync Binlog;<br style="margin: 0px; padding: 0px; max-width: 100%; box-sizing: border-box !important; word-wrap: break-word !important;" /> InnoDB commit (写入COMMIT标记后释放prepare_commit_mutex)。


当sync_binlog=1时,很明显上述的第二步会成为瓶颈,而且还是持有全局大锁,这也是为什么性能会急剧下降。


很快Mariadb就提出了一个Binlog Group Commit方案,即在准备写入Binlog时,维持一个队列,最早进入队列的是leader,后来的是follower,leader为搜集到的队列中的线程依次写Binlog文件, 并commit事务。Percona 的Group Commit实现也是Port自Mariadb。不过仍在使用Percona Server5.5的朋友需要注意,该Group Commit实现可能破坏掉Semisync的行为


Oracle MySQL 在5.6版本开始也支持Binlog Group Commit,使用了和Mariadb类似的思路,但将Group Commit的过程拆分成了三个阶段:flush stage 将各个线程的binlog从cache写到文件中; sync stage 对binlog做fsync操作(如果需要的话);commit stage 为各个线程做引擎层的事务commit。每个stage同时只有一个线程在操作。


Tips:当引入Group Commit后,sync_binlog的含义就变了,假定设为1000,表示的不是1000个事务后做一次fsync,而是1000个事务组。

Oracle MySQL的实现的优势在于三个阶段可以并发执行,从而提升效率。


XA Recover


在Binlog打开的情况下,MySQL默认使用MySQL_BIN_LOG来做XA协调者,大致流程为:


1.扫描最后一个Binlog文件,提取其中的xid;
2.InnoDB维持了状态为Prepare的事务链表,将这些事务的xid和Binlog中记录的xid做比较,如果在Binlog中存在,则提交,否则回滚事务。


通过这种方式,可以让InnoDB和Binlog中的事务状态保持一致。显然只要事务在InnoDB层完成了Prepare,并且写入了Binlog,就可以从崩溃中恢复事务,这意味着我们无需在InnoDB commit时显式的write/fsync redo log。


Tips:MySQL为何只需要扫描最后一个Binlog文件呢 ? 原因是每次在rotate到新的Binlog文件时,总是保证没有正在提交的事务,然后fsync一次InnoDB的redo log。这样就可以保证老的Binlog文件中的事务在InnoDB总是提交的。


问题


其实问题很简单:每个事务都要保证其Prepare的事务被write/fsync到redo log文件。尽管某个事务可能会帮助其他事务完成redo 写入,但这种行为是随机的,并且依然会产生明显的log_sys->mutex开销。


优化


从XA恢复的逻辑我们可以知道,只要保证InnoDB Prepare的redo日志在写Binlog前完成write/sync即可。因此我们对Group Commit的第一个stage的逻辑做了些许修改,大概描述如下:


Step1. InnoDB Prepare,记录当前的LSN到thd中;

Step2. 进入Group Commit的flush stage;Leader搜集队列,同时算出队列中最大的LSN。

Step3. 将InnoDB的redo log write/fsync到指定的LSN

Step4. 写Binlog并进行随后的工作(sync Binlog, InnoDB commit , etc)


通过延迟写redo log的方式,显式的为redo log做了一次组写入,并减少了log_sys->mutex的竞争。


目前官方MySQL已经根据我们report的bug#73202锁提供的思路,对5.7.6的代码进行了优化,对应的Release Note如下:


When using InnoDB with binary logging enabled, concurrent transactions written in the InnoDB redo log are now grouped together before synchronizing to disk when innodb_flush_log_at_trx_commit is set to 1, which reduces the amount of synchronization operations. This can lead to improved performance.


性能数据


简单测试了下,使用sysbench, update_non_index.lua, 100张表,每张10w行记录,innodb_flush_log_at_trx_commit=2, sync_binlog=1000,关闭Gtid


 并发线程        原生                  修改后32             25600                2700064             30000                35000128            33000                39000256            29800                38000


MySQL · 新增特性· DDL fast fail


背景


项目的快速迭代开发和在线业务需要保持持续可用的要求,导致MySQL的ddl变成了DBA很头疼的事情,而且经常导致故障发生。本篇介绍RDS分支上做的一个功能改进,DDL fast fail。主要解决:DDL操作因为无法获取MDL排它锁,进入等待队列的时候,阻塞了应用所有的读写请求问题。


MDL锁机制介绍


首先介绍一下MDL(METADATA LOCK)锁机制,MySQL为了保证表结构的完整性和一致性,对表的所有访问都需要获得相应级别的MDL锁,比如以下场景:


session 1: start transaction; select * from test.t1;
session 2: alter table test.t1 add extra int;
session 3: select * from test.t1;


  • session 1对t1表做查询,首先需要获取t1表的MDL_SHARED_READ级别MDL锁。锁一直持续到commit结束,然后释放。


  • session 2对t1表做DDL,需要获取t1表的MDL_EXCLUSIVE级别MDL锁,因为MDL_SHARED_READ与MDL_EXCLUSIVE不相容,所以session 2被session 1阻塞,然后进入等待队列。


  • session 3对t1表做查询,因为等待队列中有MDL_EXCLUSIVE级别MDL锁请求,所以session3也被阻塞,进入等待队列。


这种场景就是目前因为MDL锁导致的很经典的阻塞问题,如果session1长时间未提交,或者查询持续过长时间,那么后续对t1表的所有读写操作,都被阻塞。 对于在线的业务来说,很容易导致业务中断。


aliyun RDS分支改进


DDL fast fail并没有解决真正DDL过程中的阻塞问题,但避免了因为DDL操作没有获取锁,进而导致业务其他查询/更新语句阻塞的问题。


其实现方式如下:


  • alter table test.t1 no_wait/wait 1 add extra int;
    在ddl语句中,增加了no_wait/wait 1语法支持。


其处理逻辑如下:


首先尝试获取t1表的MDL_EXCLUSIVE级别的MDL锁:


  • 当语句指定的是no_wait,如果获取失败,客户端将得到报错信息:ERROR : Lock wait timeout exceeded; try restarting transaction。


  • 当语句指定的是wait 1,如果获取失败,最多等待1s,然后得到报错信息:ERROR : Lock wait timeout exceeded; try restarting transaction。


另外,除了alter语句以外,还支持rename,truncate,drop,optimize,create index等ddl操作。


与Oracle的比较


在Oracle 10g的时候,DDL操作经常会遇到这样的错误信息:


  • ora-00054:resource busy and acquire with nowait specified 即DDL操作无法获取表上面的排它锁,而fast fail。


其实DDL获取排他锁的设计,需要考虑的就是两个问题:


  1. 雪崩,如果你采用排队阻塞的机制,那么DDL如果长时间无法获取锁,就会导致应用的雪崩效应,对于高并发的业务,也是灾难。


  2. 饿死,如果你采用强制式的机制,那么要防止DDL一直无法获取锁的情况,在业务高峰期,可能DDL永远无法成功。


在Oracle 11g的时候,引入了DDL_LOCK_TIMEOUT参数,如果你设置了这个参数,那么DDL操作将使用排队阻塞模式,可以在session和global级别设置, 给了用户更多选择。


MySQL · 性能优化· 启用GTID场景的性能问题及优化


背景


MySQL从5.6版本开始支持GTID特性,也就是所谓全局事务ID,在整个复制拓扑结构内,每个事务拥有自己全局唯一标识。GTID包含两个部分,一部分是实例的UUID,另一部分是实例内递增的整数。


GTID的分配包含两种方式,一种是自动分配,另外一种是显式设置session.gtid_next,下面简单介绍下这两种方式:


自动分配


如果没有设置session级别的变量gtid_next,所有事务都走自动分配逻辑。分配GTID发生在GROUP COMMIT的第一个阶段,也就是flush stage,大概可以描述为:


  • Step 1:事务过程中,碰到第一条DML语句需要记录Binlog时,分配一段Gtid事件的cache,但不分配实际的GTID


  • Step 2:事务完成后,进入commit阶段,分配一个GTID并写入Step1预留的Gtid事件中,该GTID必须保证不在gtid_owned集合和gtid_executed集合中。 分配的GTID随后被加入到gtid_owned集合中。


  • Step 3:将Binlog 从线程cache中刷到Binlog文件中。


  • Step 4:将GTID加入到gtid_executed集合中。


  • Step 5:在完成sync stage 和commit stage后,各个会话将其使用的GTID从gtid_owned中移除。


显式设置


用户通过设置session级别变量gtid_next可以显式指定一个GTID,流程如下:


  • Step 1:设置变量gtid_next,指定的GTID被加入到gtid_owned集合中。


  • Step 2:执行任意事务SQL,在将binlog从线程cache刷到binlog文件后,将GTID加入到gtid_executed集合中。


  • Step 3:在完成事务COMMIT后,从gtid_owned中移除。


备库SQL线程使用的就是第二种方式,因为备库在apply主库的日志时,要保证GTID是一致的,SQL线程读取到GTID事件后,就根据其中记录的GTID来设置其gtid_next变量。


问题


由于在实例内,GTID需要保证唯一性,因此不管是操作gtid_executed集合和gtid_owned集合,还是分配GTID,都需要加上一个大锁。我们的优化主要集中在第一种GTID分配方式。


对于GTID的分配,由于处于Group Commit的第一个阶段,由该阶段的leader线程为其follower线程分配GTID及刷Binlog,因此不会产生竞争。


而在Step 5,各个线程在完成事务提交后,各自去从gtid_owned集合中删除其使用的gtid。这时候每个线程都需要获取互斥锁,很显然,并发越高,这种竞争就越明显,我们很容易从pt-pmp输出中看到如下类似的trace:


 ha_commit_trans—>MySQL_BIN_LOG::commit—>MySQL_BIN_LOG::ordered_commit—>MySQL_BIN_LOG::finish_commit—>Gtid_state::update_owned_gtids_impl—>lock_sidno


这同时也会影响到GTID的分配阶段,导致TPS在高并发场景下的急剧下降。


解决


实际上对于自动分配GTID的场景,并没有必要维护gtid_owned集合。我们的修改也非常简单,在自动分配一个GTID后,直接加入到gtid_executed集合中,避免维护gtid_owned,这样事务提交时就无需去清理gtid_owned集合了,从而可以完全避免锁竞争。


当然为了保证一致性,如果分配GTID后,写入Binlog文件失败,也需要从gtid_executed集合中删除。不过这种场景非常罕见。


性能数据


使用sysbench,100张表,每张10w行记录,update_non_index.lua,纯内存操作,innodb_flush_log_at_trx_commit = 2,sync_binlog = 1000


 并发线程       原生               修改后32           24500              2500064           27900              29000128          30800              31500256          29700              32000512          29300              317001024         27000              31000


从测试结果可以看到,优化前随着并发上升,性能出现下降,而优化后则能保持TPS稳定。


MySQL · 捉虫动态· InnoDB自增列重复值问题


问题重现


先从问题入手,重现下这个 bug


use test;
drop table if exists t1;
create table t1(id int auto_increment, a int, primary key (id)) engine=innodb;
insert into t1 values (1,2);
insert into t1 values (null,2);
insert into t1 values (null,2);
select * from t1;
+----+------+
| id | a |
+----+------+
| 1 | 2 |
| 2 | 2 |
| 3 | 2 |
+----+------+
delete from t1 where id=2;
delete from t1 where id=3;
select * from t1;
+----+------+
| id | a |
+----+------+
| 1 | 2 |
+----+------+


这里我们关闭MySQL,再启动MySQL,然后再插入一条数据


insert into t1 values (null,2);
select * FROM T1;
+----+------+
| id | a |
+----+------+
| 1 | 2 |
+----+------+
| 2 | 2 |
+----+------+


我们看到插入了(2,2),而如果我没有重启,插入同样数据我们得到的应该是(4,2)。 上面的测试反映了MySQLd重启后,InnoDB存储引擎的表自增id可能出现重复利用的情况。


自增id重复利用在某些场景下会出现问题。依然用上面的例子,假设t1有个历史表t1_history用来存t1表的历史数据,那么MySQLd重启前,ti_history中可能已经有了(2,2)这条数据,而重启后我们又插入了(2,2),当新插入的(2,2)迁移到历史表时,会违反主键约束。


原因分析


InnoDB 自增列出现重复值的原因:


MySQL> show create table t1\G;
*************************** 1. row ***************************
Table: t1
Create Table: CREATE TABLE `t1` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`a` int(11) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=innodb AUTO_INCREMENT=4 DEFAULT CHARSET=utf8
1 row in set (0.00 sec)


建表时可以指定 AUTO_INCREMENT值,不指定时默认为1,这个值表示当前自增列的起始值大小,如果新插入的数据没有指定自增列的值,那么自增列的值即为这个起始值。对于InnoDB表,这个值没有持久到文件中。而是存在内存中(dict_table_struct.autoinc)。那么又问,既然这个值没有持久下来,为什么我们每次插入新的值后, show create table t1看到AUTO_INCREMENT值是跟随变化的。其实show create table t1是直接从dict_table_struct.autoinc取得的(ha_innobase::update_create_info)。


知道了AUTO_INCREMENT是实时存储内存中的。那么,MySQLd 重启后,从哪里得到AUTO_INCREMENT呢? 内存值肯定是丢失了。实际上MySQL采用执行类似select max(id)+1 from t1;方法来得到AUTO_INCREMENT。而这种方法就是造成自增id重复的原因。


MyISAM自增值


MyISAM也有这个问题吗?MyISAM是没有这个问题的。myisam会将这个值实时存储在.MYI文件中(mi_state_info_write)。MySQLd重起后会从.MYI中读取AUTO_INCREMENT值(mi_state_info_read)。因此,MyISAM表重启是不会出现自增id重复的问题。


问题修复


MyISAM选择将AUTO_INCREMENT实时存储在.MYI文件头部中。实际上.MYI头部还会实时存其他信息,也就是说写AUTO_INCREMENT只是个顺带的操作,其性能损耗可以忽略。InnoDB 表如果要解决这个问题,有两种方法。


1)将AUTO_INCREMENT最大值持久到frm文件中。

2)将 AUTO_INCREMENT最大值持久到聚集索引根页trx_id所在的位置。


第一种方法直接写文件性能消耗较大,这是一额外的操作,而不是一个顺带的操作。我们采用第二种方案。为什么选择存储在聚集索引根页页头trx_id,页头中存储trx_id,只对二级索引页和insert buf 页头有效(MVCC)。而聚集索引根页页头trx_id这个值是没有使用的,始终保持初始值0。正好这个位置8个字节可存放自增值的值。我们每次更新AUTO_INCREMENT值时,同时将这个值修改到聚集索引根页页头trx_id的位置。 这个写操作跟真正的数据写操作一样,遵守write-ahead log原则,只不过这里只需要redo log ,而不需要undo log。因为我们不需要回滚AUTO_INCREMENT的变化(即回滚后自增列值会保留,即使insert 回滚了,AUTO_INCREMENT值不会回滚)。


因此,AUTO_INCREMENT值存储在聚集索引根页trx_id所在的位置,实际上是对内存根页的修改和多了一条redo log(量很小),而这个redo log 的写入也是异步的,可以说是原有事务log的一个顺带操作。因此AUTO_INCREMENT值存储在聚集索引根页这个性能损耗是极小的。


修复后的性能对比,我们新增了全局参数innodb_autoinc_persistent 取值on/off; on 表示将AUTO_INCREMENT值实时存储在聚集索引根页。off则采用原有方式只存储在内存。


./bin/sysbench --test=sysbench/tests/db/insert.lua --MySQL-port=4001 --MySQL-user=root \--MySQL-table-engine=innodb --MySQL-db=sbtest --oltp-table-size=0 --oltp-tables-count=1 \--num-threads=100 --MySQL-socket=/u01/zy/sysbench/build5/run/MySQL.sock  --max-time=7200 --max-requests run
set global innodb_autoinc_persistent=off;
tps: 22199 rt:2.25ms
set global innodb_autoinc_persistent=on;
tps: 22003 rt:2.27ms


可以看出性能损耗在%1以下。


改进


新增参数innodb_autoinc_persistent_interval 用于控制持久化AUTO_INCREMENT值的频率。例如:innodb_autoinc_persistent_interval=100,auto_incrememt_increment=1时,即每100次insert会控制持久化一次AUTO_INCREMENT值。每次持久的值为:当前值+innodb_autoinc_persistent_interval。


测试结论


innodb_autoinc_persistent=ON, innodb_autoinc_persistent_interval=1时性能损耗在%1以下。

innodb_autoinc_persistent=ON, innodb_autoinc_persistent_interval=100时性能损耗可以忽略。


限制


  1. innodb_autoinc_persistent=on, innodb_autoinc_persistent_interval=N>1时,自增N次后持久化到聚集索引根页,每次持久的值为当前AUTO_INCREMENT+(N-1)*innodb_autoextend_increment。重启后读取持久化的AUTO_INCREMENT值会偏大,造成一些浪费但不会重复。innodb_autoinc_persistent_interval=1 每次都持久化没有这个问题。


  2. 如果innodb_autoinc_persistent=on,频繁设置auto_increment_increment的可能会导致持久化到聚集索引根页的值不准确。因为innodb_autoinc_persistent_interval计算没有考虑auto_increment_increment变化的情况,参看dict_table_autoinc_update_if_greater。而设置auto_increment_increment的情况极少,可以忽略。


注意:如果我们使用需要开启innodb_autoinc_persistent,应该在参数文件中指定


innodb_autoinc_persistent= on


如果这样指定set global innodb_autoinc_persistent=on;重启后将不会从聚集索引根页读取AUTO_INCREMENT最大值。


疑问:对于InnoDB表,重启通过select max(id)+1 from t1得到AUTO_INCREMENT值,如果id上有索引那么这个语句使用索引查找就很快。那么,这个可以解释MySQL 为什么要求自增列必须包含在索引中的原因。 如果没有指定索引,则报如下错误


ERROR 1075 (42000): Incorrect table definition; there can be only one auto column and it must be defined as a key 而myisam表竟然也有这个要求,感觉是多余的。

这篇关于怎么跳出 MySQL 的10个大坑(上)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1111867

相关文章

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi

MySQL重复数据处理的七种高效方法

《MySQL重复数据处理的七种高效方法》你是不是也曾遇到过这样的烦恼:明明系统测试时一切正常,上线后却频频出现重复数据,大批量导数据时,总有那么几条不听话的记录导致整个事务莫名回滚,今天,我就跟大家分... 目录1. 重复数据插入问题分析1.1 问题本质1.2 常见场景图2. 基础解决方案:使用异常捕获3.

SQL中redo log 刷⼊磁盘的常见方法

《SQL中redolog刷⼊磁盘的常见方法》本文主要介绍了SQL中redolog刷⼊磁盘的常见方法,将redolog刷入磁盘的方法确保了数据的持久性和一致性,下面就来具体介绍一下,感兴趣的可以了解... 目录Redo Log 刷入磁盘的方法Redo Log 刷入磁盘的过程代码示例(伪代码)在数据库系统中,r

mysql中的group by高级用法

《mysql中的groupby高级用法》MySQL中的GROUPBY是数据聚合分析的核心功能,主要用于将结果集按指定列分组,并结合聚合函数进行统计计算,下面给大家介绍mysql中的groupby用法... 目录一、基本语法与核心功能二、基础用法示例1. 单列分组统计2. 多列组合分组3. 与WHERE结合使

Mysql用户授权(GRANT)语法及示例解读

《Mysql用户授权(GRANT)语法及示例解读》:本文主要介绍Mysql用户授权(GRANT)语法及示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql用户授权(GRANT)语法授予用户权限语法GRANT语句中的<权限类型>的使用WITH GRANT

Mysql如何解决死锁问题

《Mysql如何解决死锁问题》:本文主要介绍Mysql如何解决死锁问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录【一】mysql中锁分类和加锁情况【1】按锁的粒度分类全局锁表级锁行级锁【2】按锁的模式分类【二】加锁方式的影响因素【三】Mysql的死锁情况【1

SQL BETWEEN 的常见用法小结

《SQLBETWEEN的常见用法小结》BETWEEN操作符是SQL中非常有用的工具,它允许你快速选取某个范围内的值,本文给大家介绍SQLBETWEEN的常见用法,感兴趣的朋友一起看看吧... 在SQL中,BETWEEN是一个操作符,用于选取介于两个值之间的数据。它包含这两个边界值。BETWEEN操作符常用

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

MySql match against工具详细用法

《MySqlmatchagainst工具详细用法》在MySQL中,MATCH……AGAINST是全文索引(Full-Textindex)的查询语法,它允许你对文本进行高效的全文搜素,支持自然语言搜... 目录一、全文索引的基本概念二、创建全文索引三、自然语言搜索四、布尔搜索五、相关性排序六、全文索引的限制七