用于低质量蒙面人脸识别的一致子决策网络

2024-08-27 13:44

本文主要是介绍用于低质量蒙面人脸识别的一致子决策网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Consistent Sub-Decision Network for Low-Quality Masked Face Recognition

摘要

        提出了一种利用由多个dropout块组成的在线一致性评估结构来获得对应于人脸不同区域的子决策网络,以获得对应于不同面部区域的子决策,并通过加权双向KL散度来约束子决策,使网络集中在上面而没有遮挡的面部。此外,还进行知识蒸馏,以驱动蒙面人脸嵌入接近原始数据分布,以减轻信息丢失。实验表明,所提出的方法在公共蒙面人脸识别数据集(即 RMFD、MFR2 和 MLFW)上的性能优于基线。

创新点

        1)提出了一致的子决策网络来获得对应于不同面部区域的子决策,并通过加权双向KL散度来约束子决策,使网络更加集中于面部区域(上面的脸没有遮挡)。

        2)进行知识蒸馏,以驱动蒙面人脸嵌入接近原始数据分布,以减轻信息丢失。

模型

        使用 FaceX-Zoo为每个正常人脸图像生成蒙版人脸图像,以获得混合训练数据集。假设正常人脸图像集、混合人脸图像集和身份标签集,组成一对数据集 D 。两个样本 {x_i}^N,{x_i}^M表示为作为来自同一身份的正常人脸图像及其对应的蒙版人脸图像。

        所提出的一致子决策网络的结构。在图的上部,每个人脸被提取成特征图,作为dropout模块的输入以获得多个子决策,不同的颜色区分了具有不同遮罩盖的面部图像的 dropout 模块的输出。应用双向KL散度约束来自动确定子决策一致性的优化方向。在图的下部,使用预训练的正常人脸识别模型来为上面的学生网络提炼指导性知识。

A. 一致的子决策网络

        基于模拟的方法提出从未蒙蔽的面孔生成蒙蔽的面孔。然而,在这些模拟人脸中,仍然存在一些具有负遮挡的低质量样本,从而导致面部特征模糊或缺失。为了解决这个问题,利用由多个dropout块组成的在线一致性评估结构来获得对应于人脸不同区域的子决策。子决策受到加权双向 KL 散度的约束,使网络更多地集中在没有遮挡的上表面上,并提取更多的判别性特征。

        在线子决策一致性评估方法的结构。展平后的特征图通过 dropout 模块生成子决策。一致性是通过子决策之间的 KL 散度来衡量的。

        给定来自D的人脸图像X,首先使用特征图生成器提取输入人脸图像的特征图。然后特征图被展平并通过多个 dropout 块以获得对应于不同面部区域的子决策,这些子决策被收集,并且在实现中设置 n =3。由于已经证明,在网络上重复应用dropout可以近似高斯过程的不确定性,我们进一步将这种不确定性扩展到子决策。在子决策之间应用双向KL散度计算来确定一致性值C(X)。

        子决策一致性可用于从模拟蒙面图像中检测低质量样本。首先,计算子决策之间的分歧。然后,应用激活函数来计算每个输入人脸图像的一致性值。一致性得分输出是[0,1]之间的概率值。如图2所示,可以看到一致性可以应用于从模拟蒙面图像中检测低质量样本。

        子决策一致性可用于从模拟蒙面图像中检测低质量样本。值越大表示子决策一致性和图像质量越高。

        为此,知道低子决策一致性值对应于模拟人脸图像中的低质量样本。然而,不同的子决策侧重于具有不同识别信息的不同面部区域。因此,寻求迫使具有低识别信息的子决策逼近具有高识别信息的子决策,从而使网络更多地集中在上表面而没有遮挡。为了自动评估每个子决策的信息程度,应用概念分支的输出作为双向KL散度约束中的权重。

 B. 知识蒸馏

        正常人脸比蒙面人脸包含更多的识别性身份信息。寻求使蒙面人脸嵌入接近正常人脸嵌入,以减轻信息丢失。具体来说,使用预训练的模型来执行知识蒸馏。给定一对面部图像X^N,X^M,从教师和学生模型中获得正常人脸嵌入 f^N和蒙面人脸嵌入 f^M。为了充分利用不同的面部区域信息,进一步应用概念分支的权重来获得加权嵌入,可以表示为:

        其中,M_{teacher}是预训练模型的嵌入编码器,G是特征图生成器,D_i是第i个dropout块,w^i表示概念分支的输出。使用嵌入之间的余弦距离方法来进行知识蒸馏作为正则项:

        为了保持类间差异和类内聚合,我们使用 CosFace作为我们的分类损失函数,它可以表示为

        总体损失函数公式如下:

这篇关于用于低质量蒙面人脸识别的一致子决策网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1111837

相关文章

Debian 13升级后网络转发等功能异常怎么办? 并非错误而是管理机制变更

《Debian13升级后网络转发等功能异常怎么办?并非错误而是管理机制变更》很多朋友反馈,更新到Debian13后网络转发等功能异常,这并非BUG而是Debian13Trixie调整... 日前 Debian 13 Trixie 发布后已经有众多网友升级到新版本,只不过升级后发现某些功能存在异常,例如网络转

Python开发简易网络服务器的示例详解(新手入门)

《Python开发简易网络服务器的示例详解(新手入门)》网络服务器是互联网基础设施的核心组件,它本质上是一个持续运行的程序,负责监听特定端口,本文将使用Python开发一个简单的网络服务器,感兴趣的小... 目录网络服务器基础概念python内置服务器模块1. HTTP服务器模块2. Socket服务器模块

Go语言网络故障诊断与调试技巧

《Go语言网络故障诊断与调试技巧》在分布式系统和微服务架构的浪潮中,网络编程成为系统性能和可靠性的核心支柱,从高并发的API服务到实时通信应用,网络的稳定性直接影响用户体验,本文面向熟悉Go基本语法和... 目录1. 引言2. Go 语言网络编程的优势与特色2.1 简洁高效的标准库2.2 强大的并发模型2.

基于Spring Boot 的小区人脸识别与出入记录管理系统功能

《基于SpringBoot的小区人脸识别与出入记录管理系统功能》文章介绍基于SpringBoot框架与百度AI人脸识别API的小区出入管理系统,实现自动识别、记录及查询功能,涵盖技术选型、数据模型... 目录系统功能概述技术栈选择核心依赖配置数据模型设计出入记录实体类出入记录查询表单出入记录 VO 类(用于

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co

Linux网络配置之网桥和虚拟网络的配置指南

《Linux网络配置之网桥和虚拟网络的配置指南》这篇文章主要为大家详细介绍了Linux中配置网桥和虚拟网络的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、网桥的配置在linux系统中配置一个新的网桥主要涉及以下几个步骤:1.为yum仓库做准备,安装组件epel-re

python如何下载网络文件到本地指定文件夹

《python如何下载网络文件到本地指定文件夹》这篇文章主要为大家详细介绍了python如何实现下载网络文件到本地指定文件夹,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下...  在python中下载文件到本地指定文件夹可以通过以下步骤实现,使用requests库处理HTTP请求,并结合o

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义