tf.identity 和 tf.control_dependencies的用法

2024-08-27 09:18

本文主要是介绍tf.identity 和 tf.control_dependencies的用法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于 tf.control_dependencies(具体参考博客,也是本文主要参考对象):
tf.control_dependencies(control_inputs)设计是用来控制计算流图的,给图中的某些计算指定顺序。比如:我们想要获取参数更新后的值,那么我们可以这么组织我们的代码。

opt = tf.train.Optimizer().minize(loss)with tf.control_dependencies([opt]): # 即执行过括号中的操作再执行下面的操作updated_weight = tf.identity(weight)with tf.Session() as sess:tf.global_variables_initializer().run()sess.run(updated_weight, feed_dict={...}) # 这样每次得到的都是更新后的weight

总结一句话就是,在执行某些op,tensor之前,某些op,tensor得首先被运行。


关于tf.identity的用法:

tf.identity(input,name=None)
#Return a tensor with the same shape and contents as input.
#返回一个tensor,contents和shape都和input的一样。

简单地说就是返回了一个一模一样新的tensor,再control_dependencies的作用块下,需要增加一个新节点到gragh中。(别人的总结:为cpu gpu传输什么的提供更好的性能。就像你做一个电路板,有些地方要把线路引出来,调试的时候可以看中间结果一样,tf.identity就是为了在图上显示这个值而创建的虚拟节点。)
在Stack Overflow中有一个问题对tf.identity进行了举例,具体如下:

x = tf.Variable(0.0)
x_plus_1 = tf.assign_add(x, 1) # 对x进行加1,x_plus_l是个opwith tf.control_dependencies([x_plus_1]):y = x
init = tf.global_variables_initializer()with tf.Session() as session:init.run() # 相当于session.run(init)for i in xrange(5):print(y.eval()) # y.eval()这个相当于session.run(y)

上面的代码返回结果为:

0.0
0.0
0.0
0.0
0.0

因为这样相当于x_plus_1 这个op没有被运行,因为一般我们在session中会这么执行:

with tf.Session() as session:init.run()for i in range(5):session.run(x_plus_1) #添加了这行代码print(y.eval())

返回的结果即是我们想要得到的效果:

1.0
2.0
3.0
4.0
5.0

但是通过tf.identity也可以得到相同的结果:

x = tf.Variable(0.0)
x_plus_1 = tf.assign_add(x, 1)with tf.control_dependencies([x_plus_1]):y = tf.identity(x)
init = tf.initialize_all_variables()with tf.Session() as session:init.run()for i in xrange(5):print(y.eval())

下面说明两种 control_dependencies 不 work 的情况

下面有两种情况,control_dependencies不work,其实并不是它真的不work,而是我们的使用方法有问题。

第一种情况:

import tensorflow as tf
w = tf.Variable(1.0)
ema = tf.train.ExponentialMovingAverage(0.9)
update = tf.assign_add(w, 1.0)ema_op = ema.apply([update])
with tf.control_dependencies([ema_op]):ema_val = ema.average(update)with tf.Session() as sess:tf.global_variables_initializer().run()for i in range(3):print(sess.run([ema_val]))

也许你会觉得,在我们 sess.run([ema_val]), ema_op 都会被先执行,然后再计算ema_val,实际情况并不是这样,为什么?
有兴趣的可以看一下源码,就会发现 ema.average(update) 不是一个 op,它只是从ema对象的一个字典中取出键对应的 tensor 而已,然后赋值给ema_val。这个 tensor是由一个在 tf.control_dependencies([ema_op]) 外部的一个 op 计算得来的,所以 control_dependencies会失效。解决方法也很简单,看代码:

import tensorflow as tf
w = tf.Variable(1.0)
ema = tf.train.ExponentialMovingAverage(0.9)
update = tf.assign_add(w, 1.0)ema_op = ema.apply([update])
with tf.control_dependencies([ema_op]):ema_val = tf.identity(ema.average(update)) #一个identity搞定with tf.Session() as sess:tf.global_variables_initializer().run()for i in range(3):print(sess.run([ema_val]))

第二种情况:这个情况一般不会碰到

import tensorflow as tf
w = tf.Variable(1.0)
ema = tf.train.ExponentialMovingAverage(0.9)
update = tf.assign_add(w, 1.0)ema_op = ema.apply([update])
with tf.control_dependencies([ema_op]):w1 = tf.Variable(2.0)ema_val = ema.average(update)with tf.Session() as sess:tf.global_variables_initializer().run()for i in range(3):print(sess.run([ema_val, w1]))

这种情况下,control_dependencies也不 work。读取 w1 的值并不会触发 ema_op, 原因请看代码:

#这段代码出现在Variable类定义文件中第287行,
# 在创建Varible时,tensorflow是移除了dependencies了的
#所以会出现 control 不住的情况
with ops.control_dependencies(None):...      

这篇关于tf.identity 和 tf.control_dependencies的用法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1111257

相关文章

mapstruct中的@Mapper注解的基本用法

《mapstruct中的@Mapper注解的基本用法》在MapStruct中,@Mapper注解是核心注解之一,用于标记一个接口或抽象类为MapStruct的映射器(Mapper),本文给大家介绍ma... 目录1. 基本用法2. 常用属性3. 高级用法4. 注意事项5. 总结6. 编译异常处理在MapSt

java中long的一些常见用法

《java中long的一些常见用法》在Java中,long是一种基本数据类型,用于表示长整型数值,接下来通过本文给大家介绍java中long的一些常见用法,感兴趣的朋友一起看看吧... 在Java中,long是一种基本数据类型,用于表示长整型数值。它的取值范围比int更大,从-922337203685477

MyBatis ResultMap 的基本用法示例详解

《MyBatisResultMap的基本用法示例详解》在MyBatis中,resultMap用于定义数据库查询结果到Java对象属性的映射关系,本文给大家介绍MyBatisResultMap的基本... 目录MyBATis 中的 resultMap1. resultMap 的基本语法2. 简单的 resul

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

java中Optional的核心用法和最佳实践

《java中Optional的核心用法和最佳实践》Java8中Optional用于处理可能为null的值,减少空指针异常,:本文主要介绍java中Optional核心用法和最佳实践的相关资料,文中... 目录前言1. 创建 Optional 对象1.1 常规创建方式2. 访问 Optional 中的值2.1

git stash命令基本用法详解

《gitstash命令基本用法详解》gitstash是Git中一个非常有用的命令,它可以临时保存当前工作区的修改,让你可以切换到其他分支或者处理其他任务,而不需要提交这些还未完成的修改,这篇文章主要... 目录一、基本用法1. 保存当前修改(包括暂存区和工作区的内容)2. 查看保存了哪些 stash3. 恢

IDEA中Maven Dependencies出现红色波浪线的原因及解决方法

《IDEA中MavenDependencies出现红色波浪线的原因及解决方法》在使用IntelliJIDEA开发Java项目时,尤其是基于Maven的项目,您可能会遇到MavenDependenci... 目录一、问题概述二、解决步骤2.1 检查 Maven 配置2.2 更新 Maven 项目2.3 清理本

Python struct.unpack() 用法及常见错误详解

《Pythonstruct.unpack()用法及常见错误详解》struct.unpack()是Python中用于将二进制数据(字节序列)解析为Python数据类型的函数,通常与struct.pa... 目录一、函数语法二、格式字符串详解三、使用示例示例 1:解析整数和浮点数示例 2:解析字符串示例 3:解

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

javascript fetch 用法讲解

《javascriptfetch用法讲解》fetch是一个现代化的JavaScriptAPI,用于发送网络请求并获取资源,它是浏览器提供的全局方法,可以替代传统的XMLHttpRequest,这篇... 目录1. 基本语法1.1 语法1.2 示例:简单 GET 请求2. Response 对象3. 配置请求