第二章、评测指标与方法(晚点再继续补充)

2024-08-27 01:20

本文主要是介绍第二章、评测指标与方法(晚点再继续补充),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上两章基本上是AI生成,下面正真的干货来临,注意看~

一、评测指标

1、准确率

  • 插件命中率 :针对一批量数据,智能体独有的命中插件的概率
  • 知识库命中率:针对一批量数据,智能体独有的命中知识库的概率
  • 工作流命中率:针对一批量数据,智能体独有的命中工作流的概率
  • 精确率:系统返回的文档中与查询相关的文档比例,精确率=TP/(TP+FP).目标值:≥ 0.80
  • 召回率(Recall):是针对原样本而言的,其含义是在实际为正的样本中被预测为正样本的概率。目标值:>=0.75
  • 误报率:误报率=FP/(FP+TN)
  • 漏报率:漏报率=FN/(FN+TP)
  • F1:精确率和召回率的调和平均值。F1分数=(2∗精确率∗召回率)/(精确率+召回率),目标值>=0.77

2、生成质量

  • Blue:衡量生成文本与参考文本(通常是人工生成的)之间的相似度,常用于机器翻译评估。目标值>=0.30
  • Rouge:评估生成文本与参考文本之间的重合度,包括ROUGE-1(基于单词的重合)、ROUGE-2(基于短语的重合)和ROUGE-L(基于最长公共子序列的重合)。目标值>=0.35
  • Meteor:评估机器翻译质量的指标,它考虑了词义和词序。目标值:>=0.25

3、响应速度

  • 首响时间:检索第一个字节响应回来的时间
  • 生成速度:从检索结果到生成完成文本所需时间
  • 端到端延迟:从用户输入查询到返回最终生成文本的整体时间

网上应该有很多对于样本混淆矩阵解释,这里就不再过多赘述。稍后在评测和数据集中会说明具体是怎么标记及使用的

二、评测方法

基于python环境,提前先安装

pip install jieba

pip install scikit-learn

pip install rouge

pip install nltk

1、BlueValueTools(生成质量Blue)

避免每次都要下载nltk_data,可以将nltk_data放在一个文件夹下

import osfrom xxx.utils import jieba
import nltk
from nltk.translate.bleu_score import SmoothingFunctionclass   BlueValueTools(object):def __init__(self):nltk_data_path = os.path.abspath('./nltk_data')nltk.data.path.append(nltk_data_path)# 将句子分词并转换为n-gram格式def sentence_to_ngrams(self,sentence, n):words = jieba.lcut(sentence)return set(nltk.ngrams(words, n))# 计算BLEU指标def calculate_bleu(self,reference, candidate):smooth = SmoothingFunction().method4scores = []# for n in range(1, max_n + 1):reference_ngrams = self.sentence_to_ngrams(reference, 1)candidate_ngrams = self.sentence_to_ngrams(candidate, 1)return nltk.translate.bleu_score.sentence_bleu([reference_ngrams], candidate_ngrams, smoothing_function=smooth)
# # 测试数据
# reference = "关机并断开电源:确保电脑完全关闭,并从电源插座中拔掉电源线。"
# candidate = "关机并断开电源:确保电脑完全关闭,并从电源插座中拔掉电源线。"
# # 计算BLEU指标
# bleu_scores = BlueValueTools().calculate_bleu(reference, candidate)
# print(bleu_scores)

2、MeteorValueTools(生成质量Meteor)

import osfrom xxx.utils import jieba
import nltk
from nltk.translate.meteor_score import meteor_scoreclass MeteorValueTools(object):def __init__(self):nltk_data_path = os.path.abspath('./nltk_data')nltk.data.path.append(nltk_data_path)def preprocess_text(self, text):return ' '.join(jieba.cut(text)).split()def calculate_meteor(self, reference, candidate):processed_reference = self.preprocess_text(reference)processed_candidate = self.preprocess_text(candidate)scores = meteor_score([processed_reference], processed_candidate)return scoresif __name__ == '__main__':reference = "关机并断开电源:确保电脑完全关闭,并从电源插座中拔掉电源线。"candidate = "关机并断开电源。"scores = MeteorValueTools().calculate_meteor(reference, candidate)print(scores)

3、RougeValueTools(生成质量Rouge)

from rouge import Rouge
from xxx.utils import jiebaclass RougeValueTools(object):def preprocess_text(self, text):# 分词并连接成字符串words = jieba.lcut(text)processed_text = ' '.join(words)return processed_textdef calculate_rouge(self, reference, candidate):processed_reference = self.preprocess_text(reference)processed_candidate = self.preprocess_text(candidate)rouge = Rouge()scores = rouge.get_scores(processed_candidate, processed_reference, avg=True)# print(scores['rouge-1']['f'])# print(scores['rouge-2']['f'])# print(scores['rouge-l']['f'])scores = {'rouge-1': scores['rouge-1']['f'],'rouge-2': scores['rouge-2']['f'],'rouge-l': scores['rouge-l']['f']}return scoresif __name__ == '__main__':reference = "关机并断开电源:确保电脑完全关闭,并从电源插座中拔掉电源线。"candidate = "关机并断开电源。"scores = RougeValueTools().calculate_rouge(reference, candidate)print(scores)

4、数据集样本计算(先分享工具类,后面数据集中详细讲解)

from sklearn.metrics import confusion_matrixclass PrecisionScoreTool:def __init__(self, actual_labels, predicted_labels):self.actual_labels = actual_labelsself.predicted_labels = predicted_labelsdef calculate_metrics(self):# 计算混淆矩阵cm = confusion_matrix(self.actual_labels, self.predicted_labels)# 从混淆矩阵提取 TP、TN、FP、FNTP = cm[1, 1]TN = cm[0, 0]FP = cm[0, 1]FN = cm[1, 0]print(TP, TN, FP, FN)recall = TP / (TP + FN) if (TP + FN) != 0 else 0precision = TP / (TP + FP) if (TP + FP) != 0 else 0F1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) != 0 else 0FPR = FP / (FP + TN) if (FP + TN) != 0 else 0FNR = FN / (FN + TP) if (FN + TP) != 0 else 0return precision, recall, FPR, FNR, F1if __name__ == '__main__':calculator = PrecisionScoreTool([1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])precision, recall, FPR, FNR, F1 = calculator.calculate_metrics()print(precision)print(recall)print(FPR)print(FNR)print(F1)

最后关于响应速度,后面章节会结合大模型调用进行说明

这篇关于第二章、评测指标与方法(晚点再继续补充)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1110235

相关文章

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi