第二章、评测指标与方法(晚点再继续补充)

2024-08-27 01:20

本文主要是介绍第二章、评测指标与方法(晚点再继续补充),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上两章基本上是AI生成,下面正真的干货来临,注意看~

一、评测指标

1、准确率

  • 插件命中率 :针对一批量数据,智能体独有的命中插件的概率
  • 知识库命中率:针对一批量数据,智能体独有的命中知识库的概率
  • 工作流命中率:针对一批量数据,智能体独有的命中工作流的概率
  • 精确率:系统返回的文档中与查询相关的文档比例,精确率=TP/(TP+FP).目标值:≥ 0.80
  • 召回率(Recall):是针对原样本而言的,其含义是在实际为正的样本中被预测为正样本的概率。目标值:>=0.75
  • 误报率:误报率=FP/(FP+TN)
  • 漏报率:漏报率=FN/(FN+TP)
  • F1:精确率和召回率的调和平均值。F1分数=(2∗精确率∗召回率)/(精确率+召回率),目标值>=0.77

2、生成质量

  • Blue:衡量生成文本与参考文本(通常是人工生成的)之间的相似度,常用于机器翻译评估。目标值>=0.30
  • Rouge:评估生成文本与参考文本之间的重合度,包括ROUGE-1(基于单词的重合)、ROUGE-2(基于短语的重合)和ROUGE-L(基于最长公共子序列的重合)。目标值>=0.35
  • Meteor:评估机器翻译质量的指标,它考虑了词义和词序。目标值:>=0.25

3、响应速度

  • 首响时间:检索第一个字节响应回来的时间
  • 生成速度:从检索结果到生成完成文本所需时间
  • 端到端延迟:从用户输入查询到返回最终生成文本的整体时间

网上应该有很多对于样本混淆矩阵解释,这里就不再过多赘述。稍后在评测和数据集中会说明具体是怎么标记及使用的

二、评测方法

基于python环境,提前先安装

pip install jieba

pip install scikit-learn

pip install rouge

pip install nltk

1、BlueValueTools(生成质量Blue)

避免每次都要下载nltk_data,可以将nltk_data放在一个文件夹下

import osfrom xxx.utils import jieba
import nltk
from nltk.translate.bleu_score import SmoothingFunctionclass   BlueValueTools(object):def __init__(self):nltk_data_path = os.path.abspath('./nltk_data')nltk.data.path.append(nltk_data_path)# 将句子分词并转换为n-gram格式def sentence_to_ngrams(self,sentence, n):words = jieba.lcut(sentence)return set(nltk.ngrams(words, n))# 计算BLEU指标def calculate_bleu(self,reference, candidate):smooth = SmoothingFunction().method4scores = []# for n in range(1, max_n + 1):reference_ngrams = self.sentence_to_ngrams(reference, 1)candidate_ngrams = self.sentence_to_ngrams(candidate, 1)return nltk.translate.bleu_score.sentence_bleu([reference_ngrams], candidate_ngrams, smoothing_function=smooth)
# # 测试数据
# reference = "关机并断开电源:确保电脑完全关闭,并从电源插座中拔掉电源线。"
# candidate = "关机并断开电源:确保电脑完全关闭,并从电源插座中拔掉电源线。"
# # 计算BLEU指标
# bleu_scores = BlueValueTools().calculate_bleu(reference, candidate)
# print(bleu_scores)

2、MeteorValueTools(生成质量Meteor)

import osfrom xxx.utils import jieba
import nltk
from nltk.translate.meteor_score import meteor_scoreclass MeteorValueTools(object):def __init__(self):nltk_data_path = os.path.abspath('./nltk_data')nltk.data.path.append(nltk_data_path)def preprocess_text(self, text):return ' '.join(jieba.cut(text)).split()def calculate_meteor(self, reference, candidate):processed_reference = self.preprocess_text(reference)processed_candidate = self.preprocess_text(candidate)scores = meteor_score([processed_reference], processed_candidate)return scoresif __name__ == '__main__':reference = "关机并断开电源:确保电脑完全关闭,并从电源插座中拔掉电源线。"candidate = "关机并断开电源。"scores = MeteorValueTools().calculate_meteor(reference, candidate)print(scores)

3、RougeValueTools(生成质量Rouge)

from rouge import Rouge
from xxx.utils import jiebaclass RougeValueTools(object):def preprocess_text(self, text):# 分词并连接成字符串words = jieba.lcut(text)processed_text = ' '.join(words)return processed_textdef calculate_rouge(self, reference, candidate):processed_reference = self.preprocess_text(reference)processed_candidate = self.preprocess_text(candidate)rouge = Rouge()scores = rouge.get_scores(processed_candidate, processed_reference, avg=True)# print(scores['rouge-1']['f'])# print(scores['rouge-2']['f'])# print(scores['rouge-l']['f'])scores = {'rouge-1': scores['rouge-1']['f'],'rouge-2': scores['rouge-2']['f'],'rouge-l': scores['rouge-l']['f']}return scoresif __name__ == '__main__':reference = "关机并断开电源:确保电脑完全关闭,并从电源插座中拔掉电源线。"candidate = "关机并断开电源。"scores = RougeValueTools().calculate_rouge(reference, candidate)print(scores)

4、数据集样本计算(先分享工具类,后面数据集中详细讲解)

from sklearn.metrics import confusion_matrixclass PrecisionScoreTool:def __init__(self, actual_labels, predicted_labels):self.actual_labels = actual_labelsself.predicted_labels = predicted_labelsdef calculate_metrics(self):# 计算混淆矩阵cm = confusion_matrix(self.actual_labels, self.predicted_labels)# 从混淆矩阵提取 TP、TN、FP、FNTP = cm[1, 1]TN = cm[0, 0]FP = cm[0, 1]FN = cm[1, 0]print(TP, TN, FP, FN)recall = TP / (TP + FN) if (TP + FN) != 0 else 0precision = TP / (TP + FP) if (TP + FP) != 0 else 0F1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) != 0 else 0FPR = FP / (FP + TN) if (FP + TN) != 0 else 0FNR = FN / (FN + TP) if (FN + TP) != 0 else 0return precision, recall, FPR, FNR, F1if __name__ == '__main__':calculator = PrecisionScoreTool([1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])precision, recall, FPR, FNR, F1 = calculator.calculate_metrics()print(precision)print(recall)print(FPR)print(FNR)print(F1)

最后关于响应速度,后面章节会结合大模型调用进行说明

这篇关于第二章、评测指标与方法(晚点再继续补充)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1110235

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

JavaScript对象转数组的三种方法实现

《JavaScript对象转数组的三种方法实现》本文介绍了在JavaScript中将对象转换为数组的三种实用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录方法1:使用Object.keys()和Array.map()方法2:使用Object.entr

SpringBoot中ResponseEntity的使用方法举例详解

《SpringBoot中ResponseEntity的使用方法举例详解》ResponseEntity是Spring的一个用于表示HTTP响应的全功能对象,它可以包含响应的状态码、头信息及响应体内容,下... 目录一、ResponseEntity概述基本特点:二、ResponseEntity的基本用法1. 创

java中判断json key是否存在的几种方法

《java中判断jsonkey是否存在的几种方法》在使用Java处理JSON数据时,如何判断某一个key是否存在?本文就来介绍三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目http://www.chinasem.cn录第一种方法是使用 jsONObject 的 has 方法

java中ssh2执行多条命令的四种方法

《java中ssh2执行多条命令的四种方法》本文主要介绍了java中ssh2执行多条命令的四种方法,包括分号分隔、管道分隔、EOF块、脚本调用,可确保环境配置生效,提升操作效率,具有一定的参考价值,感... 目录1 使用分号隔开2 使用管道符号隔开3 使用写EOF的方式4 使用脚本的方式大家平时有没有遇到自