模拟实现STL中的unordered_map和unordered_set

2024-08-26 22:52
文章标签 实现 模拟 set map unordered stl

本文主要是介绍模拟实现STL中的unordered_map和unordered_set,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.unordered_map和unordered_set简介

2.unordered_map和unordered_set设计图

3.迭代器的设计

4.哈希表的设计

5.my_unordered_map和my_unordered_set代码

1.unordered_map和unordered_set简介

unordered_map和unordered_set的使用非常类似于map和set,两者之间的差异在于底层的数据结构不同,unordered_map和unordered_set的底层使用的数据结构是哈希表,map和set底层使用的数据结构是红黑树。哈希表和红黑树都是查找效率非常高的数据结构,红黑树的查找效率是O(logN),哈希表的查找效率是O(1),总体来说哈希表的查找效率略胜一筹,但是红黑树是接近平衡的二叉搜索树,具有隐藏技能 —— 中序遍历,数据有序(升序),map和set的遍历采用的就是中序遍历;也就是说,遍历map和set得到的数据是有序的,而哈希表的遍历是无序的,所以,为了区分功能相同而底层数据结构的不同的关联式容器,以哈希表为底层数据结构的map和set前加上unordered,unordered其实就是无序的意思。

2.unordered_map和unordered_set设计图

unordered_map和unordered_set底层是开散列方式实现的哈希表,要想实现unordered_map和unordered_set,需要在内部封装哈希表;但是,STL中的容器都提供统一的访问方式 —— 迭代器,所以我们还需要实现unordered_map和unordered_set的迭代器。说白了,unordered_map和unordered_set就是通过组合 哈希表 和 迭代器 来实现的。而unordered_map和unordered_set实现上的区别就是内部存储的数据不同(一个存储键值对,一个存储元素本身),但是整体的设计框架是相同的。

unordered_map和unordered_set的设计图如下:

一个问题:unordered_map中存储的是键值对,unordered_set中存储的是一个个的元素,而二者的底层使用的数据结构都是 开散列实现的哈希表,那我们需要将哈希表实现两份吗?这个问题和map和set中数据存储的问题相同,如果实现两份的话,就会造成代码重复和冗余;解决方案也是和map、set中解决该问题的方式相同。请看下图:

可以看出,在使用上,unordered_set传递一个模板参数,unordered_map传递两个模板参数,但是在unordered_map和unordered_set中封装的哈希表都需要传递两个参数;所以unordered_map中将K类型传给底层哈希表的第一个参数,用 K 和 V封装出pair<K,V>类型传给 底层哈希表的第二个参数;unordered_set中传递给底层哈希表的第一个和第二个参数的类型都是K。这样,哈希表中第二个模板参数T就是哈希表中实际存储的数据类型。于是,就实现了复用同一个 哈希表的类模板。

那第一个模板参数是不是没用呢?并不是,因为,unordered_map和unordered_set的使用上是以Key值  (K类型的数据) 为主的,并且有些操作也是根据Key值来进行的,比如:查找操作。所以我们也是需要单独的K类型的数据的。

获取数据中的Key值问题

由于同一个类模板的哈希表中经常涉及数据的比较,unordered_set中数据的比较是按照Key值来比较的,unordered_map中数据的比较也是按照Key值来比较的。但是在同一个类模板的哈希表中不能使用同样的方式获取Key值,所示实现一个获取Key值的仿函数,该仿函数作为参数传递给哈希表。

实现代码如下:

// unordered_map中获取Key值的仿函数
struct MapKeyOfT
{const K& operator()(const pair<K, V>& kv){return kv.first;}
};// unordered_set中获取Key值的仿函数
struct SetKeyOfT
{const K& operator()(const K& key){return key;}
};

3.迭代器的设计

unordered_map和unordered_set迭代器的设计不同于map和set,map和set的迭代器的操作主要是是在一棵二叉搜索树上进行,所以封装结点的指针即可;但是unordered_map和unordered_set的迭代器的操作是在哈希表上进行的,而哈希表是由 _table _table下挂的一个个的结点组成的,所以 unordered_map 和 unordered_set 的迭代器需要封装 哈希表 和 结点的指针 (对于哈希表的封装,也采用指针的形式) 。

迭代器总体设计图如下:

迭代器的那些操作

operator* 和 operator->操作:迭代器模仿的是指针的操作,指针常用的操作就是 解引用 * 和 箭头访问操作符 ->;operator* 用于取出结点中的数据,operator->用于返回节点中数据的地址。代码如下:

T& operator*()
{return _node->_data;
}T* operator->()
{return &(_node->_data);
}

迭代器的++操作:迭代器的++操作用于实现 用迭代器遍历哈希表中的数据,所以我们需要依次遍历桶,如果桶不为空,就遍历桶中的数据,遍历完当前桶中的数据之后,再遍历下一个桶中的数据;如果桶为空,直接遍历下一个桶;迭代器++操作代码如下:

		Self& operator++(){if (_node->_next){// 当前桶还是节点_node = _node->_next;}else{// 当前桶走完了,找下一个桶KeyOfT kot;Hash hs;size_t hashi = hs(kot(_node->_data)) % _ht->_tables.size();// 找下一个桶hashi++;while (hashi < _ht->_tables.size()){if (_ht->_tables[hashi]){_node = _ht->_tables[hashi];break;}hashi++;}// 后面没有桶了if (hashi == _ht->_tables.size()){_node = nullptr;}}return *this;}

判断相等和不相等操作:迭代器判断相等和不相等,只需要判断迭代器中 结点的指针是否相等。代码如下所示:

        bool operator!=(const Self& s){return _node != s._node;}bool operator==(const Self& s){return _node == s._node;}

4.哈希表的设计

哈希表的实现有闭散列和开散列两种方式,我们采用开散列的方式实现,哈希表的设计图如下所示:

哈希函数

哈希表主要通过哈希函数来计算出 存储的数据 和 数据存储的位置 之间的映射关系。在该设计中,我们采用 除留余数法 来计算 存储元素 和 存储位置 之间的映射关系;但是,该方法只适用于整形的数据,因为并不是所有类型的数据都能进行取余运算,所以,对于一些不能取余的类型的数据,我们需要提供一个仿函数来计算出其哈希值,方便其进行取余运算,从而计算出数据的存储位置。

哈希函数示例代码如下:

template<class K>
struct HashFunc
{size_t operator()(const K& key){return (size_t)key;}
};
// 特化
template<>
struct HashFunc<string>
{size_t operator()(const string& s){size_t hash = 0;for (auto e : s){hash += e;hash *= 131;}return hash;}
};

哈希表中的操作

begin()和end()操作:begin()用于返回哈希表中第一个结点的迭代器,end()用于返回最后一个结点的下一个位置的迭代器,其实就是空。

代码实现如下:

    iterator begin(){for (size_t i = 0; i < _tables.size(); i++){// 找到第一个桶的第一个节点if (_tables[i]){return iterator(_tables[i], this);}}return end();}iterator end(){return iterator(nullptr, this);}

数据的插入:哈希表中插入数据是哈希表的精髓,因为数据的插入位置和数据之间通过哈希函数建立一 一映射的关系,通过数据的值,就可以很快的判断出数据存储的位置;并且通过限制负载因子来防止桶中的数据过多,从而为飞速的查找效率打下基础。

开散列的哈希表中的数据的插入采用头插的方式,代码实现如下:

bool Insert(const T& data)
{KeyOfT kot;if (Find(kot(data)))return false;Hash hs;// 负载因子到1就扩容if (_n == _tables.size()){vector<Node*> newTables(_tables.size() * 2, nullptr);for (size_t i = 0; i < _tables.size(); i++){// 取出旧表中节点,重新计算挂到新表桶中Node* cur = _tables[i];while (cur){Node* next = cur->_next;// 头插到新表size_t hashi = hs(kot(cur->_data)) % newTables.size();cur->_next = newTables[hashi];newTables[hashi] = cur;cur = next;}_tables[i] = nullptr;}_tables.swap(newTables);}size_t hashi = hs(kot(data)) % _tables.size();Node* newnode = new Node(data);// 头插newnode->_next = _tables[hashi];_tables[hashi] = newnode;++_n;return true;
}

数据的查找:在哈希表中查找一个值,首先通过哈希函数计算出该元素在哈希表中的第几个桶,然后遍历该桶下的数据,找到了就返回该结点的地址,没找到就返回空。

代码如下:

Node* Find(const K& key)
{KeyOfT kot;Hash hs;size_t hashi = hs(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (kot(cur->_data) == key){return cur;}cur = cur->_next;}return nullptr;
}

数据的删除:删除一个数据的时候,首先要找到该数据所在的结点,找到该结点之后,删除即可。如果不存在该数据,则返回false。

删除代码如下:

bool Erase(const K& key)
{KeyOfT kot;Hash hs;size_t hashi = hs(key) % _tables.size();Node* prev = nullptr;Node* cur = _tables[hashi];while (cur){if (kot(cur->_data) == key){// 删除if (prev){prev->_next = cur->_next;}else{_tables[hashi] = cur->_next;}delete cur;--_n;return true;}prev = cur;cur = cur->_next;}return false;
}

5.my_unordered_map和my_unordered_set代码

my_unordered_map代码如下:

#include "Open_HashTable.h"namespace wall
{template<class K, class V, class Hash = HashFunc<K>>class unordered_map{struct MapKeyOfT{const K& operator()(const pair<K, V>& kv){return kv.first;}};public:typedef typename hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash>::iterator iterator;iterator begin(){return _ht.begin();}iterator end(){return _ht.end();}bool insert(const pair<K, V>& kv){return _ht.Insert(kv);}bool erase(const K& key){_ht.Erase(key);}iterator find(const K& key){Node* ret = Find(key);return iterator(ret);}private:hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash> _ht;};
}

my_unordered_set代码如下:

#include "Open_HashTable.h"namespace wall
{template<class K, class Hash = HashFunc<K>>class unordered_set{struct SetKeyOfT{const K& operator()(const K& key){return key;}};public:typedef typename hash_bucket::HashTable<K, const K, SetKeyOfT, Hash>::iterator iterator;iterator begin(){return _ht.begin();}iterator end(){return _ht.end();}bool insert(const K& key){return _ht.Insert(key);}bool erase(const K& key){_ht.Erase(key);}iterator find(const K& key){Node* ret = Find(key);return iterator(ret);}private:hash_bucket::HashTable<K, const K, SetKeyOfT, Hash> _ht;};
}

总结:可以看出,模拟实现的unordered_map和unordered_set主要是对 哈希表迭代器进行了组合和封装,通过添加一些操作来更加方便的使用底层的数据结构。

这篇关于模拟实现STL中的unordered_map和unordered_set的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1109912

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter