【深度学习】嘿马深度学习笔记第5篇:神经网络与tf.keras,学习目标【附代码文档】

2024-08-26 22:04

本文主要是介绍【深度学习】嘿马深度学习笔记第5篇:神经网络与tf.keras,学习目标【附代码文档】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本教程的知识点为:深度学习介绍 1.1 深度学习与机器学习的区别 TensorFlow介绍 2.4 张量 2.4.1 张量(Tensor) 2.4.1.1 张量的类型 TensorFlow介绍 1.2 神经网络基础 1.2.1 Logistic回归 1.2.1.1 Logistic回归 TensorFlow介绍 总结 每日作业 神经网络与tf.keras 1.3 神经网络基础 神经网络与tf.keras 1.3 Tensorflow实现神经网络 1.3.1 TensorFlow keras介绍 1.3.2 案例:实现多层神经网络进行时装分类 神经网络与tf.keras 1.4 深层神经网络 为什么使用深层网络 1.4.1 深层神经网络表示 卷积神经网络 3.1 卷积神经网络(CNN)原理 为什么需要卷积神经网络 原因之一:图像特征数量对神经网络效果压力 卷积神经网络 3.1 卷积神经网络(CNN)原理 为什么需要卷积神经网络 原因之一:图像特征数量对神经网络效果压力 卷积神经网络 2.2案例:CIFAR100类别分类 2.2.1 CIFAR100数据集介绍 2.2.2 API 使用 卷积神经网络 2.4 BN与神经网络调优 2.4.1 神经网络调优 2.4.1.1 调参技巧 卷积神经网络 2.4 经典分类网络结构 2.4.1 LeNet-5解析 2.4.1.1 网络结构 卷积神经网络 2.5 CNN网络实战技巧 2.5.1 迁移学习(Transfer Learning) 2.5.1.1 介绍 卷积神经网络 总结 每日作业 商品物体检测项目介绍 1.1 项目演示 商品物体检测项目介绍 3.4 Fast R-CNN 3.4.1 Fast R-CNN 3.4.1.1 RoI pooling YOLO与SSD 4.3 案例:SSD进行物体检测 4.3.1 案例效果 4.3.2 案例需求 商品检测数据集训练 5.2 标注数据读取与存储 5.2.1 案例:xml读取本地文件存储到pkl 5.2.1.1 解析结构

完整笔记资料代码->:https://gitee.com/yinuo112/AI/tree/master/深度学习/嘿马深度学习笔记/note.md

感兴趣的小伙伴可以自取哦~


全套教程部分目录:


部分文件图片:

神经网络与tf.keras

1.3 Tensorflow实现神经网络

学习目标

  • 目标

  • 掌握Tensorflow API的使用

  • 应用

  • 应用TF搭建一个分类模型

1.3.1 TensorFlow keras介绍

Keras 是一个用于构建和训练深度学习模型的高阶 API。它可用于快速设计原型、高级研究和生产,具有以下三个主要优势:

  • 方便用户使用,快速构建模型 Keras 具有针对常见用例做出优化的简单而一致的界面。它可针对用户错误提供切实可行的清晰反馈。
  • 模块化和可组 将可配置的构造块连接在一起就可以构建 Keras 模型,并且几乎不受限制。

  • 导入:

import tensorflow as tf
from tensorflow import keras
  • 1、获取相关现有数据集(无需自己去构造)
  • keras.datasets

    • mnist:手写数字
    • fashion_mnist:时尚分类
    • cifar10(100):10个类别分类
fashion_mnist = keras.datasets.fashion_mnist(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()print(train_images, train_labels)
  • 2、构建模型
  • 在 Keras 中,您可以通过组合层来构建模型。模型(通常)是由层构成的图。最常见的模型类型是层的堆叠,keras.layers中就有很多模型,如下图:可以在源码文件中找到
  • tf.keras.Sequential模型(layers如下)
from tensorflow.python.keras.layers import Dense
from tensorflow.python.keras.layers import DepthwiseConv2D
from tensorflow.python.keras.layers import Dot
from tensorflow.python.keras.layers import Dropout
from tensorflow.python.keras.layers import ELU
from tensorflow.python.keras.layers import Embedding
from tensorflow.python.keras.layers import Flatten
from tensorflow.python.keras.layers import GRU
from tensorflow.python.keras.layers import GRUCell
from tensorflow.python.keras.layers import LSTMCell
...
...
...
  • Flatten:将输入数据进行形状改变展开
  • Dense:添加一层神经元

  • Dense(units,activation=None,**kwargs)

    • units:神经元个数
    • activation:激活函数,参考tf.nn.relu,tf.nn.softmax,tf.nn.sigmoid,tf.nn.tanh
    • **kwargs:输入上层输入的形状,input_shape=()

tf.keras.Sequential构建类似管道的模型

model = keras.Sequential([keras.layers.Flatten(input_shape=(28, 28)),keras.layers.Dense(128, activation=tf.nn.relu),keras.layers.Dense(10, activation=tf.nn.softmax)
])
  • 3、训练与评估

  • 通过调用model的 compile 方法去配置该模型所需要的训练参数以及评估方法。

  • model.compile(optimizer,loss=None,metrics=None, 准确率衡):配置训练相关参数

    • optimizer:梯度下降优化器(在keras.optimizers)
from tensorflow.python.keras.optimizers import Adadeltafrom tensorflow.python.keras.optimizers import Adagradfrom tensorflow.python.keras.optimizers import Adamfrom tensorflow.python.keras.optimizers import Adamaxfrom tensorflow.python.keras.optimizers import Nadamfrom tensorflow.python.keras.optimizers import Optimizerfrom tensorflow.python.keras.optimizers import RMSpropfrom tensorflow.python.keras.optimizers import SGDfrom tensorflow.python.keras.optimizers import deserializefrom tensorflow.python.keras.optimizers import getfrom tensorflow.python.keras.optimizers import serializefrom tensorflow.python.keras.optimizers import AdamOptimizer()
  * loss=None:损失类型,类型可以是字符串或者该function名字参考:
from tensorflow.python.keras.losses import KLDfrom tensorflow.python.keras.losses import KLD as kldfrom tensorflow.python.keras.losses import KLD as kullback_leibler_divergencefrom tensorflow.python.keras.losses import MAEfrom tensorflow.python.keras.losses import MAE as maefrom tensorflow.python.keras.losses import MAE as mean_absolute_errorfrom tensorflow.python.keras.losses import MAPEfrom tensorflow.python.keras.losses import MAPE as mapefrom tensorflow.python.keras.losses import MAPE as mean_absolute_percentage_errorfrom tensorflow.python.keras.losses import MSEfrom tensorflow.python.keras.losses import MSE as mean_squared_errorfrom tensorflow.python.keras.losses import MSE as msefrom tensorflow.python.keras.losses import MSLEfrom tensorflow.python.keras.losses import MSLE as mean_squared_logarithmic_errorfrom tensorflow.python.keras.losses import MSLE as mslefrom tensorflow.python.keras.losses import binary_crossentropyfrom tensorflow.python.keras.losses import categorical_crossentropyfrom tensorflow.python.keras.losses import categorical_hingefrom tensorflow.python.keras.losses import cosinefrom tensorflow.python.keras.losses import cosine as cosine_proximityfrom tensorflow.python.keras.losses import deserializefrom tensorflow.python.keras.losses import getfrom tensorflow.python.keras.losses import hingefrom tensorflow.python.keras.losses import logcoshfrom tensorflow.python.keras.losses import poissonfrom tensorflow.python.keras.losses import serializefrom tensorflow.python.keras.losses import sparse_categorical_crossentropyfrom tensorflow.python.keras.losses import squared_hinge
  * metrics=None, ['accuracy']
  • model.fit():进行训练

    • (x=None,y=None, batch_size=None,epochs=1,callbacks=None)

    • x:特征值:

1、Numpy array (or array-like), or a list of arrays2、A TensorFlow tensor, or a list of tensors3、`tf.data` dataset or a dataset iterator. Should return a tuple of either `(inputs, targets)` or `(inputs, targets, sample_weights)`.4、A generator or `keras.utils.Sequence` returning `(inputs, targets)` or `(inputs, targets, sample weights)`.
  * y:目标值* batch_size=None:批次大小* epochs=1:训练迭代次数* callbacks=None:添加回调列表(用于如tensorboard显示等)
model.compile(optimizer=tf.keras.optimizers.Adam(),loss='sparse_categorical_crossentropy',metrics=['accuracy'])model.fit(train_images, train_labels, epochs=5)model.evaluate(test_images, test_labels)

1.3.2 案例:实现多层神经网络进行时装分类

70000 张灰度图像,涵盖 10 个类别。以下图像显示了单件服饰在较低分辨率(28x28 像素)下的效果:

服装

1.3.2.1 需求:

标签类别
0T 恤衫/上衣
1裤子
2套衫
3裙子
4外套
5凉鞋
6衬衫
7运动鞋
8包包

1.3.2.2 步骤分析和代码实现:

  • 读取数据集:

  • 从datasets中获取相应的数据集,直接有训练集和测试集

class SingleNN(object):def __init__(self):(self.train, self.train_label), (self.test, self.test_label) = keras.datasets.fashion_mnist.load_data()
  • 进行模型编写

  • 双层:128个神经元,全连接层10个类别输出

class SingleNN(object):model = keras.Sequential([keras.layers.Flatten(input_shape=(28, 28)),keras.layers.Dense(128, activation=tf.nn.relu),keras.layers.Dense(10, activation=tf.nn.softmax)])

这里我们model只是放在类中,作为类的固定模型属性

激活函数的选择

涉及到网络的优化时候,会有不同的激活函数选择有一个问题是神经网络的隐藏层和输出单元用什么激活函数。之前我们都是选用 sigmoid 函数,但有时其他函数的效果会好得多,大多数通过实践得来,没有很好的解释性。

可供选用的激活函数有:

  • tanh 函数(the hyperbolic tangent function,双曲正切函数):

效果比 sigmoid 函数好,因为函数输出介于 -1 和 1 之间。

注 :tanh 函数存在和 sigmoid 函数一样的缺点:当 z 趋紧无穷大(或无穷小),导数的梯度(即函数的斜率)就趋紧于 0,这使得梯度算法的速度会减慢。

  • ReLU 函数(the rectified linear unit,修正线性单元)

当 z > 0 时,梯度始终为 1,从而提高神经网络基于梯度算法的运算速度,收敛速度远大于 sigmoid 和 tanh。然而当 z < 0 时,梯度一直为 0,但是实际的运用中,该缺陷的影响不是很大。

  • Leaky ReLU(带泄漏的 ReLU):

Leaky ReLU 保证在 z < 0 的时候,梯度仍然不为 0。理论上来说,Leaky ReLU 有 ReLU 的所有优点,但在实际操作中没有证明总是好于 ReLU,因此不常用。

为什么需要非线性的激活函数

使用线性激活函数和不使用激活函数、直接使用 Logistic 回归没有区别,那么无论神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,就成了最原始的感知器了。

a [ 1 ] = z [ 1 ] = W [ 1 ] x + b [ 1 ] a^{[1]} = z^{[1]} = W^{[1]}x+b^{[1]} a[1]=z[1]=W[1]x+b[1]

a [ 2 ] = z [ 2 ] = W [ 2 ] a [ 1 ] + b [ 2 ] {a}^{[2]}=z^{[2]} = W^{[2]}a^{[1]}+b^{[2]} a[2]=z[2]=W[2]a[1]+b[2]

那么这样的话相当于

a [ 2 ] = z [ 2 ] = W [ 2 ] ( W [ 1 ] x + b [ 1 ] ) + b [ 2 ] = ( W [ 2 ] W [ 1 ] ) x + ( W [ 2 ] b [ 1 ] + b [ 2 ] ) = w x + b {a}^{[2]}=z^{[2]} = W^{[2]}(W^{[1]}x+b^{[1]})+b^{[2]}=(W^{[2]}W^{[1]})x+(W^{[2]}b^{[1]}+b^{[2]})=wx+b a[2]=z[2]=W[2](W[1]x+b[1])+b[2]=(W[2]W[1])x+(W[2]b[1]+b[2])=wx+b

  • 编译、训练以及评估
def compile(self):SingleNN.model.compile(optimizer=tf.train.AdamOptimizer(),loss=tf.keras.losses.sparse_categorical_crossentropy,metrics=['accuracy'])return Nonedef fit(self):SingleNN.model.fit(self.train, self.train_label, epochs=5)return Nonedef evaluate(self):test_loss, test_acc = SingleNN.model.evaluate(self.test, self.test_label)print(test_loss, test_acc)return None

1.3.2.1 打印模型

  • model.summary():查看模型结构

1.3.2.2 手动保存和回复模型

  • 目的:防止训练长时间,出现意外导致重新训练
  • model.save_weights('./weights/my_model')
  • model.load_weights('./weights/my_model')
SingleNN.model.save_weights("./ckpt/SingleNN")def predict(self):# 直接使用训练过后的权重测试if os.path.exists("./ckpt/checkpoint"):SingleNN.model.load_weights("./ckpt/SingleNN")predictions = SingleNN.model.predict(self.test)print(np.argmax(predictions, 1))return

1.3.2.3 添加Tensorboard观察损失等情况

# 添加tensoboard观察tensorboard = keras.callbacks.TensorBoard(log_dir='./graph', histogram_freq=0,write_graph=True, write_images=True)SingleNN.model.fit(self.train, self.train_label, epochs=5, callbacks=[tensorboard])

这篇关于【深度学习】嘿马深度学习笔记第5篇:神经网络与tf.keras,学习目标【附代码文档】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1109807

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Python实现word文档内容智能提取以及合成

《Python实现word文档内容智能提取以及合成》这篇文章主要为大家详细介绍了如何使用Python实现从10个左右的docx文档中抽取内容,再调整语言风格后生成新的文档,感兴趣的小伙伴可以了解一下... 目录核心思路技术路径实现步骤阶段一:准备工作阶段二:内容提取 (python 脚本)阶段三:语言风格调

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指