【深度学习】嘿马深度学习笔记第5篇:神经网络与tf.keras,学习目标【附代码文档】

2024-08-26 22:04

本文主要是介绍【深度学习】嘿马深度学习笔记第5篇:神经网络与tf.keras,学习目标【附代码文档】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本教程的知识点为:深度学习介绍 1.1 深度学习与机器学习的区别 TensorFlow介绍 2.4 张量 2.4.1 张量(Tensor) 2.4.1.1 张量的类型 TensorFlow介绍 1.2 神经网络基础 1.2.1 Logistic回归 1.2.1.1 Logistic回归 TensorFlow介绍 总结 每日作业 神经网络与tf.keras 1.3 神经网络基础 神经网络与tf.keras 1.3 Tensorflow实现神经网络 1.3.1 TensorFlow keras介绍 1.3.2 案例:实现多层神经网络进行时装分类 神经网络与tf.keras 1.4 深层神经网络 为什么使用深层网络 1.4.1 深层神经网络表示 卷积神经网络 3.1 卷积神经网络(CNN)原理 为什么需要卷积神经网络 原因之一:图像特征数量对神经网络效果压力 卷积神经网络 3.1 卷积神经网络(CNN)原理 为什么需要卷积神经网络 原因之一:图像特征数量对神经网络效果压力 卷积神经网络 2.2案例:CIFAR100类别分类 2.2.1 CIFAR100数据集介绍 2.2.2 API 使用 卷积神经网络 2.4 BN与神经网络调优 2.4.1 神经网络调优 2.4.1.1 调参技巧 卷积神经网络 2.4 经典分类网络结构 2.4.1 LeNet-5解析 2.4.1.1 网络结构 卷积神经网络 2.5 CNN网络实战技巧 2.5.1 迁移学习(Transfer Learning) 2.5.1.1 介绍 卷积神经网络 总结 每日作业 商品物体检测项目介绍 1.1 项目演示 商品物体检测项目介绍 3.4 Fast R-CNN 3.4.1 Fast R-CNN 3.4.1.1 RoI pooling YOLO与SSD 4.3 案例:SSD进行物体检测 4.3.1 案例效果 4.3.2 案例需求 商品检测数据集训练 5.2 标注数据读取与存储 5.2.1 案例:xml读取本地文件存储到pkl 5.2.1.1 解析结构

完整笔记资料代码->:https://gitee.com/yinuo112/AI/tree/master/深度学习/嘿马深度学习笔记/note.md

感兴趣的小伙伴可以自取哦~


全套教程部分目录:


部分文件图片:

神经网络与tf.keras

1.3 Tensorflow实现神经网络

学习目标

  • 目标

  • 掌握Tensorflow API的使用

  • 应用

  • 应用TF搭建一个分类模型

1.3.1 TensorFlow keras介绍

Keras 是一个用于构建和训练深度学习模型的高阶 API。它可用于快速设计原型、高级研究和生产,具有以下三个主要优势:

  • 方便用户使用,快速构建模型 Keras 具有针对常见用例做出优化的简单而一致的界面。它可针对用户错误提供切实可行的清晰反馈。
  • 模块化和可组 将可配置的构造块连接在一起就可以构建 Keras 模型,并且几乎不受限制。

  • 导入:

import tensorflow as tf
from tensorflow import keras
  • 1、获取相关现有数据集(无需自己去构造)
  • keras.datasets

    • mnist:手写数字
    • fashion_mnist:时尚分类
    • cifar10(100):10个类别分类
fashion_mnist = keras.datasets.fashion_mnist(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()print(train_images, train_labels)
  • 2、构建模型
  • 在 Keras 中,您可以通过组合层来构建模型。模型(通常)是由层构成的图。最常见的模型类型是层的堆叠,keras.layers中就有很多模型,如下图:可以在源码文件中找到
  • tf.keras.Sequential模型(layers如下)
from tensorflow.python.keras.layers import Dense
from tensorflow.python.keras.layers import DepthwiseConv2D
from tensorflow.python.keras.layers import Dot
from tensorflow.python.keras.layers import Dropout
from tensorflow.python.keras.layers import ELU
from tensorflow.python.keras.layers import Embedding
from tensorflow.python.keras.layers import Flatten
from tensorflow.python.keras.layers import GRU
from tensorflow.python.keras.layers import GRUCell
from tensorflow.python.keras.layers import LSTMCell
...
...
...
  • Flatten:将输入数据进行形状改变展开
  • Dense:添加一层神经元

  • Dense(units,activation=None,**kwargs)

    • units:神经元个数
    • activation:激活函数,参考tf.nn.relu,tf.nn.softmax,tf.nn.sigmoid,tf.nn.tanh
    • **kwargs:输入上层输入的形状,input_shape=()

tf.keras.Sequential构建类似管道的模型

model = keras.Sequential([keras.layers.Flatten(input_shape=(28, 28)),keras.layers.Dense(128, activation=tf.nn.relu),keras.layers.Dense(10, activation=tf.nn.softmax)
])
  • 3、训练与评估

  • 通过调用model的 compile 方法去配置该模型所需要的训练参数以及评估方法。

  • model.compile(optimizer,loss=None,metrics=None, 准确率衡):配置训练相关参数

    • optimizer:梯度下降优化器(在keras.optimizers)
from tensorflow.python.keras.optimizers import Adadeltafrom tensorflow.python.keras.optimizers import Adagradfrom tensorflow.python.keras.optimizers import Adamfrom tensorflow.python.keras.optimizers import Adamaxfrom tensorflow.python.keras.optimizers import Nadamfrom tensorflow.python.keras.optimizers import Optimizerfrom tensorflow.python.keras.optimizers import RMSpropfrom tensorflow.python.keras.optimizers import SGDfrom tensorflow.python.keras.optimizers import deserializefrom tensorflow.python.keras.optimizers import getfrom tensorflow.python.keras.optimizers import serializefrom tensorflow.python.keras.optimizers import AdamOptimizer()
  * loss=None:损失类型,类型可以是字符串或者该function名字参考:
from tensorflow.python.keras.losses import KLDfrom tensorflow.python.keras.losses import KLD as kldfrom tensorflow.python.keras.losses import KLD as kullback_leibler_divergencefrom tensorflow.python.keras.losses import MAEfrom tensorflow.python.keras.losses import MAE as maefrom tensorflow.python.keras.losses import MAE as mean_absolute_errorfrom tensorflow.python.keras.losses import MAPEfrom tensorflow.python.keras.losses import MAPE as mapefrom tensorflow.python.keras.losses import MAPE as mean_absolute_percentage_errorfrom tensorflow.python.keras.losses import MSEfrom tensorflow.python.keras.losses import MSE as mean_squared_errorfrom tensorflow.python.keras.losses import MSE as msefrom tensorflow.python.keras.losses import MSLEfrom tensorflow.python.keras.losses import MSLE as mean_squared_logarithmic_errorfrom tensorflow.python.keras.losses import MSLE as mslefrom tensorflow.python.keras.losses import binary_crossentropyfrom tensorflow.python.keras.losses import categorical_crossentropyfrom tensorflow.python.keras.losses import categorical_hingefrom tensorflow.python.keras.losses import cosinefrom tensorflow.python.keras.losses import cosine as cosine_proximityfrom tensorflow.python.keras.losses import deserializefrom tensorflow.python.keras.losses import getfrom tensorflow.python.keras.losses import hingefrom tensorflow.python.keras.losses import logcoshfrom tensorflow.python.keras.losses import poissonfrom tensorflow.python.keras.losses import serializefrom tensorflow.python.keras.losses import sparse_categorical_crossentropyfrom tensorflow.python.keras.losses import squared_hinge
  * metrics=None, ['accuracy']
  • model.fit():进行训练

    • (x=None,y=None, batch_size=None,epochs=1,callbacks=None)

    • x:特征值:

1、Numpy array (or array-like), or a list of arrays2、A TensorFlow tensor, or a list of tensors3、`tf.data` dataset or a dataset iterator. Should return a tuple of either `(inputs, targets)` or `(inputs, targets, sample_weights)`.4、A generator or `keras.utils.Sequence` returning `(inputs, targets)` or `(inputs, targets, sample weights)`.
  * y:目标值* batch_size=None:批次大小* epochs=1:训练迭代次数* callbacks=None:添加回调列表(用于如tensorboard显示等)
model.compile(optimizer=tf.keras.optimizers.Adam(),loss='sparse_categorical_crossentropy',metrics=['accuracy'])model.fit(train_images, train_labels, epochs=5)model.evaluate(test_images, test_labels)

1.3.2 案例:实现多层神经网络进行时装分类

70000 张灰度图像,涵盖 10 个类别。以下图像显示了单件服饰在较低分辨率(28x28 像素)下的效果:

服装

1.3.2.1 需求:

标签类别
0T 恤衫/上衣
1裤子
2套衫
3裙子
4外套
5凉鞋
6衬衫
7运动鞋
8包包

1.3.2.2 步骤分析和代码实现:

  • 读取数据集:

  • 从datasets中获取相应的数据集,直接有训练集和测试集

class SingleNN(object):def __init__(self):(self.train, self.train_label), (self.test, self.test_label) = keras.datasets.fashion_mnist.load_data()
  • 进行模型编写

  • 双层:128个神经元,全连接层10个类别输出

class SingleNN(object):model = keras.Sequential([keras.layers.Flatten(input_shape=(28, 28)),keras.layers.Dense(128, activation=tf.nn.relu),keras.layers.Dense(10, activation=tf.nn.softmax)])

这里我们model只是放在类中,作为类的固定模型属性

激活函数的选择

涉及到网络的优化时候,会有不同的激活函数选择有一个问题是神经网络的隐藏层和输出单元用什么激活函数。之前我们都是选用 sigmoid 函数,但有时其他函数的效果会好得多,大多数通过实践得来,没有很好的解释性。

可供选用的激活函数有:

  • tanh 函数(the hyperbolic tangent function,双曲正切函数):

效果比 sigmoid 函数好,因为函数输出介于 -1 和 1 之间。

注 :tanh 函数存在和 sigmoid 函数一样的缺点:当 z 趋紧无穷大(或无穷小),导数的梯度(即函数的斜率)就趋紧于 0,这使得梯度算法的速度会减慢。

  • ReLU 函数(the rectified linear unit,修正线性单元)

当 z > 0 时,梯度始终为 1,从而提高神经网络基于梯度算法的运算速度,收敛速度远大于 sigmoid 和 tanh。然而当 z < 0 时,梯度一直为 0,但是实际的运用中,该缺陷的影响不是很大。

  • Leaky ReLU(带泄漏的 ReLU):

Leaky ReLU 保证在 z < 0 的时候,梯度仍然不为 0。理论上来说,Leaky ReLU 有 ReLU 的所有优点,但在实际操作中没有证明总是好于 ReLU,因此不常用。

为什么需要非线性的激活函数

使用线性激活函数和不使用激活函数、直接使用 Logistic 回归没有区别,那么无论神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,就成了最原始的感知器了。

a [ 1 ] = z [ 1 ] = W [ 1 ] x + b [ 1 ] a^{[1]} = z^{[1]} = W^{[1]}x+b^{[1]} a[1]=z[1]=W[1]x+b[1]

a [ 2 ] = z [ 2 ] = W [ 2 ] a [ 1 ] + b [ 2 ] {a}^{[2]}=z^{[2]} = W^{[2]}a^{[1]}+b^{[2]} a[2]=z[2]=W[2]a[1]+b[2]

那么这样的话相当于

a [ 2 ] = z [ 2 ] = W [ 2 ] ( W [ 1 ] x + b [ 1 ] ) + b [ 2 ] = ( W [ 2 ] W [ 1 ] ) x + ( W [ 2 ] b [ 1 ] + b [ 2 ] ) = w x + b {a}^{[2]}=z^{[2]} = W^{[2]}(W^{[1]}x+b^{[1]})+b^{[2]}=(W^{[2]}W^{[1]})x+(W^{[2]}b^{[1]}+b^{[2]})=wx+b a[2]=z[2]=W[2](W[1]x+b[1])+b[2]=(W[2]W[1])x+(W[2]b[1]+b[2])=wx+b

  • 编译、训练以及评估
def compile(self):SingleNN.model.compile(optimizer=tf.train.AdamOptimizer(),loss=tf.keras.losses.sparse_categorical_crossentropy,metrics=['accuracy'])return Nonedef fit(self):SingleNN.model.fit(self.train, self.train_label, epochs=5)return Nonedef evaluate(self):test_loss, test_acc = SingleNN.model.evaluate(self.test, self.test_label)print(test_loss, test_acc)return None

1.3.2.1 打印模型

  • model.summary():查看模型结构

1.3.2.2 手动保存和回复模型

  • 目的:防止训练长时间,出现意外导致重新训练
  • model.save_weights('./weights/my_model')
  • model.load_weights('./weights/my_model')
SingleNN.model.save_weights("./ckpt/SingleNN")def predict(self):# 直接使用训练过后的权重测试if os.path.exists("./ckpt/checkpoint"):SingleNN.model.load_weights("./ckpt/SingleNN")predictions = SingleNN.model.predict(self.test)print(np.argmax(predictions, 1))return

1.3.2.3 添加Tensorboard观察损失等情况

# 添加tensoboard观察tensorboard = keras.callbacks.TensorBoard(log_dir='./graph', histogram_freq=0,write_graph=True, write_images=True)SingleNN.model.fit(self.train, self.train_label, epochs=5, callbacks=[tensorboard])

这篇关于【深度学习】嘿马深度学习笔记第5篇:神经网络与tf.keras,学习目标【附代码文档】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1109807

相关文章

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python