Elasticsearch向量检索(KNN)千万级耗时长问题分析与优化方案

本文主要是介绍Elasticsearch向量检索(KNN)千万级耗时长问题分析与优化方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最终效果

本文分享,ES千万级向量检索耗时分钟级的慢查询分析方法,并分享优化方案。通过借助内存加速,把查询延迟从分钟级降低到毫秒级别

方案缺点是对服务器内存有比较大的依赖!

主要问题:剔除knn插件,此插件在做ANN检索时,构建查询语句耗时长。

1.背景

1.1 资源背景

es.8.8版本

2个es节点 ; 堆内存31g; 服务器内存资源充足(100+); HDD磁盘

该优化是在forcemerge之后做的工作,如果不做forcemerge,效果会更差。即使做完forcemerge,还是不能满足查询延迟要求。

1.2 数据背景

1799w数据,向量768维度。(不带副本300G 10个分片)

在数据中做ANN检索。检索语句在2.1中。

knn 参数:"num_candidates": 100

耗时长,无响应结果,时间大于1分钟。

  1. 问题定位排查

2.1 检索语句

为了方便查阅,去掉了向量的数据。

GET tilake_vectors-000003/_search?max_concurrent_shard_requests=30&human=true
{"profile": true, "knn": {"field": "content_vector","filter": {"bool": {"must": [{"terms": {"session_id": ["institute"]}},{"term": {"vectorization_method": "title+content"}}]}},"query_vector": [],"k": 10,"num_candidates": 10},"size": 0
}

2.2 检索语句profile结果

{"took": 10006,"timed_out": false,"_shards": {"total": 2,"successful": 2,"skipped": 0,"failed": 0},"hits": {"total": {"value": 10,"relation": "eq"},"max_score": null,"hits": []},"profile": {"shards": [{"id": "[oooFp749QMWECSF0qyMaIA][tilake_vectors-000003][1]","dfs": {"statistics": {"type": "statistics","description": "collect term statistics","time": "6.9micros","time_in_nanos": 6923,"breakdown": {"term_statistics": 0,"collection_statistics": 0,"collection_statistics_count": 0,"create_weight": 4668,"term_statistics_count": 0,"rewrite_count": 0,"create_weight_count": 1,"rewrite": 0}},"knn": [{"query": [{"type": "DocAndScoreQuery","description": "DocAndScore[10]","time": "6.5micros","time_in_nanos": 6587,"breakdown": {"set_min_competitive_score_count": 0,"match_count": 0,"shallow_advance_count": 0,"set_min_competitive_score": 0,"next_doc": 916,"match": 0,"next_doc_count": 10,"score_count": 10,"compute_max_score_count": 0,"compute_max_score": 0,"advance": 524,"advance_count": 1,"count_weight_count": 0,"score": 1228,"build_scorer_count": 2,"create_weight": 1228,"shallow_advance": 0,"count_weight": 0,"create_weight_count": 1,"build_scorer": 2691}}],"rewrite_time": 9320075980,"collector": [{"name": "SimpleTopScoreDocCollector","reason": "search_top_hits","time": "10.4micros","time_in_nanos": 10460}]}]},"searches": [{"query": [{"type": "ConstantScoreQuery","description": "ConstantScore(ScoreAndDocQuery)","time": "49.4micros","time_in_nanos": 49494,"breakdown": {"set_min_competitive_score_count": 0,"match_count": 0,"shallow_advance_count": 0,"set_min_competitive_score": 0,"next_doc": 0,"match": 0,"next_doc_count": 0,"score_count": 0,"compute_max_score_count": 0,"compute_max_score": 0,"advance": 0,"advance_count": 0,"count_weight_count": 1,"score": 0,"build_scorer_count": 0,"create_weight": 46460,"shallow_advance": 0,"count_weight": 3034,"create_weight_count": 1,"build_scorer": 0},"children": [{"type": "KnnScoreDocQuery","description": "ScoreAndDocQuery","time": "2.1micros","time_in_nanos": 2115,"breakdown": {"set_min_competitive_score_count": 0,"match_count": 0,"shallow_advance_count": 0,"set_min_competitive_score": 0,"next_doc": 0,"match": 0,"next_doc_count": 0,"score_count": 0,"compute_max_score_count": 0,"compute_max_score": 0,"advance": 0,"advance_count": 0,"count_weight_count": 1,"score": 0,"build_scorer_count": 0,"create_weight": 754,"shallow_advance": 0,"count_weight": 1361,"create_weight_count": 1,"build_scorer": 0}}]}],"rewrite_time": 22921,"collector": [{"name": "EarlyTerminatingCollector","reason": "search_count","time": "54micros","time_in_nanos": 54011}]}],"aggregations": []},{"id": "[p4MgwgUtTSK6vmkayGHPKg][tilake_vectors-000003][0]","dfs": {"statistics": {"type": "statistics","description": "collect term statistics","time": "13.3micros","time_in_nanos": 13398,"breakdown": {"term_statistics": 0,"collection_statistics": 0,"collection_statistics_count": 0,"create_weight": 7433,"term_statistics_count": 0,"rewrite_count": 0,"create_weight_count": 1,"rewrite": 0}},"knn": [{"query": [{"type": "DocAndScoreQuery","description": "DocAndScore[10]","time": "10.4micros","time_in_nanos": 10449,"breakdown": {"set_min_competitive_score_count": 0,"match_count": 0,"shallow_advance_count": 0,"set_min_competitive_score": 0,"next_doc": 771,"match": 0,"next_doc_count": 10,"score_count": 10,"compute_max_score_count": 0,"compute_max_score": 0,"advance": 1204,"advance_count": 1,"count_weight_count": 0,"score": 1158,"build_scorer_count": 2,"create_weight": 2845,"shallow_advance": 0,"count_weight": 0,"create_weight_count": 1,"build_scorer": 4471}}],"rewrite_time": 10005101571,"collector": [{"name": "SimpleTopScoreDocCollector","reason": "search_top_hits","time": "10.8micros","time_in_nanos": 10837}]}]},"searches": [{"query": [{"type": "ConstantScoreQuery","description": "ConstantScore(ScoreAndDocQuery)","time": "55.7micros","time_in_nanos": 55704,"breakdown": {"set_min_competitive_score_count": 0,"match_count": 0,"shallow_advance_count": 0,"set_min_competitive_score": 0,"next_doc": 0,"match": 0,"next_doc_count": 0,"score_count": 0,"compute_max_score_count": 0,"compute_max_score": 0,"advance": 0,"advance_count": 0,"count_weight_count": 1,"score": 0,"build_scorer_count": 0,"create_weight": 53265,"shallow_advance": 0,"count_weight": 2439,"create_weight_count": 1,"build_scorer": 0},"children": [{"type": "KnnScoreDocQuery","description": "ScoreAndDocQuery","time": "3.2micros","time_in_nanos": 3271,"breakdown": {"set_min_competitive_score_count": 0,"match_count": 0,"shallow_advance_count": 0,"set_min_competitive_score": 0,"next_doc": 0,"match": 0,"next_doc_count": 0,"score_count": 0,"compute_max_score_count": 0,"compute_max_score": 0,"advance": 0,"advance_count": 0,"count_weight_count": 1,"score": 0,"build_scorer_count": 0,"create_weight": 2451,"shallow_advance": 0,"count_weight": 820,"create_weight_count": 1,"build_scorer": 0}}]}],"rewrite_time": 3431,"collector": [{"name": "EarlyTerminatingCollector","reason": "search_count","time": "28.5micros","time_in_nanos": 28514}]}],"aggregations": []}]}
}

2.3 问题发现

其中最耗时的是 rewrite_time, 总共耗时10s,这里的 rewrite阶段耗时为9.3s!

这里反复测试,不同的case,都是类似的现象。

经过排查发现,检索的过程中,只用knn检索,耗时短,加上ANN检索后,耗时变长。

我们使用到了knn插件做加速。通过对比测试,发现这个耗时长和用到的knn插件有关系。在做了修改,剔除掉knn插件后,耗时有好转,2到3s

但是偶尔也会慢7s

这里调整num_candidates 参数从10到100。耗时变长了很多

还是不满足需求,所以继续需要做优化验证。

3. 验证方案

猜想:还是耗时长。尝试使用预加载底层文件的方式,走内存加速。

验证注意事项:全程要考虑查询缓存的影响。对于es条件,相同的条件会命中缓存,在测试过程中,应该通过替换检索条件的内容,来避免查询缓存的影响。

3.1 尝试把es中的向量文件,做预加载

PUT /tilake_test_slow-000003/_settings
{"index": {"store": {"preload": ["vec", "vem", "vex"]}}
}

报错

{"error": {"root_cause": [{"type": "illegal_argument_exception","reason": "Can't update non dynamic settings [[index.store.preload]] for open indices [[tilake_test_slow/B5hiOiOZQwm8rE5yfHOcXw]]"}],"type": "illegal_argument_exception","reason": "Can't update non dynamic settings [[index.store.preload]] for open indices [[tilake_test_slow/B5hiOiOZQwm8rE5yfHOcXw]]"},"status": 400
}

3.2 需要先把索引关闭掉

POST tilake_test_slow-000003/_close

3.3 再执行修改预加载

PUT /tilake_test_slow-000003/_settings
{"index": {"store": {"preload": ["vec", "vem", "vex"]}}
}

3.4 再打开索引

POST tilake_test_slow-000003/_open

3.5 验证效果平均耗时100ms!

3.6 为什么预加载的是这几个文件?

不妨看看es 底层的文件找到对应索引的uuid

GET _cat/indices/tilake_test_slow-000003?v

根据id,可以进到es的底层存储目录中(es data目录,这里给一个示例:elasticsearch/data/indices/B5hiOiOZQwm8rE5yfHOcXw/1/index看到如下底层文件。其中有三个是hnswVectors相关的文件。es向量检索用的是hnsw算法,es存储向量就和几个相关。这块要熟悉lucene,知道这种底层文件都是什么用的三个是es8.x之后出现的内容)

3.7 内存的前后变化

操作前

操作后看到 buff/cache 增加4G

该设置并不会立即将所有相关文件加载到内存,而是在需要时才会进行预加载。因此,你可能需要在执行查询或重启节点后,才能看到内存使用的变化。

3.8 需要多少内存

以一个分片为例,该分片总大小为30G,以下是该分片全部的底层文件。其中和向量相关的文件有5.5G 。假设这些都需要加载到内存中,则为实际索引大小的五分之一。以我们的数据为例,我们累计1790W数据, 磁盘存储350G,不带副本。按照1:5的比例估算内存,则需要70G的内存空间为佳。

-rw-rw-r-- 1     68 Aug 21 14:53 _20b_0.doc
-rw-rw-r-- 1     68 Aug 21 14:53 _20b_0.pos
-rw-rw-r-- 1    29M Aug 21 14:53 _20b_0.tim
-rw-rw-r-- 1   283K Aug 21 14:53 _20b_0.tip
-rw-rw-r-- 1    265 Aug 21 14:53 _20b_0.tmd
-rw-rw-r-- 1   2.3M Aug 21 14:53 _20b_ES87BloomFilter_0.bfi
-rw-rw-r-- 1     99 Aug 21 14:53 _20b_ES87BloomFilter_0.bfm
-rw-rw-r-- 1    15K Aug 21 14:51 _20b.fdm
-rw-rw-r-- 1    24G Aug 21 14:51 _20b.fdt
-rw-rw-r-- 1   1.3M Aug 21 14:51 _20b.fdx
-rw-rw-r-- 1   4.7K Aug 21 16:35 _20b.fnm
-rw-rw-r-- 1    16M Aug 21 14:53 _20b.kdd
-rw-rw-r-- 1    45K Aug 21 14:53 _20b.kdi
-rw-rw-r-- 1    260 Aug 21 14:53 _20b.kdm
-rw-rw-r-- 1   280M Aug 21 14:53 _20b_Lucene90_0.doc
-rw-rw-r-- 1   222M Aug 21 14:53 _20b_Lucene90_0.dvd
-rw-rw-r-- 1   4.4K Aug 21 14:53 _20b_Lucene90_0.dvm
-rw-rw-r-- 1   421M Aug 21 14:53 _20b_Lucene90_0.pos
-rw-rw-r-- 1   204M Aug 21 14:53 _20b_Lucene90_0.tim
-rw-rw-r-- 1   2.7M Aug 21 14:53 _20b_Lucene90_0.tip
-rw-rw-r-- 1   2.2K Aug 21 14:53 _20b_Lucene90_0.tmd
-rw-rw-r-- 1   5.4G Aug 21 16:35 _20b_Lucene95HnswVectorsFormat_0.vec
-rw-rw-r-- 1   129K Aug 21 16:35 _20b_Lucene95HnswVectorsFormat_0.vem
-rw-rw-r-- 1    79M Aug 21 16:35 _20b_Lucene95HnswVectorsFormat_0.vex
-rw-rw-r-- 1   7.7M Aug 21 14:52 _20b.nvd
-rw-rw-r-- 1    247 Aug 21 14:52 _20b.nvm
-rw-rw-r-- 1    815 Aug 21 16:35 _20b.si
-rw-rw-r-- 1    395 Aug 22 20:00 segments_6p
-rw-rw-r-- 1      0 Aug 21 11:30 write.lock

4. 注意事项

4.1 工作原理

当你配置 index.store.preload 时,Elasticsearch 会使用底层操作系统的文件系统缓存(通常是页缓存)将指定类型的文件(如 .vec、.vem、.vex)预加载到内存中。文件系统缓存是操作系统层面的一种机制,用于将磁盘上的数据读取到内存中,从而加快后续的访问速度。通过 preload,这些文件在第一次访问时会直接从内存而不是从磁盘读取,减少了磁盘I/O的延迟。

在 preload 配置下,Elasticsearch 会在查询时或者索引段被加载时,将指定文件类型的数据主动读取到内存中。这使得后续查询能够更快地访问这些数据,因为它们已经驻留在内存中,而无需进行磁盘读取。Elasticsearch 会利用这些预加载的数据来提高检索性能,尤其是在频繁访问的场景下,可以显著降低查询延迟。

4.2 内存限制

内存资源:由于 preload 会增加内存使用量,因此在配置时需要确保系统有足够的内存资源,以免影响整体性能。注意这些文件是被加载到了os cache上。占用的是服务器的内存。

也就是说,假如服务器的内存资源不够,此优化带来的收益是很小的,甚至有副作用。因为内存不足,可能会导致内存被不停的换入换出。

4.3 es 不要部署在容器中

es部署在容器中,会有各种限制,可能会看不到效果。主要是内存的影响。

持久化的东西放在容器中,会有很大的性能损失。

4.4 可能会存在第一次查询很慢的情况

预加载触发

  • 第一次对索引进行查询时,如果预加载的文件(如 .vec、.vem、.vex 文件)尚未被加载到内存中,Elasticsearch 需要从磁盘读取这些文件,并将它们加载到内存中。这会导致首次查询的响应时间较长,因为磁盘 I/O 操作通常比内存访问慢得多。

操作系统缓存

  • 即使你已经设置了 index.store.preload,实际的预加载动作是在首次访问时才会触发。如果系统刚刚启动或这些文件之前没有被访问过,那么操作系统还没有将它们缓存到内存中,因此第一次查询需要进行磁盘读取。

段文件加载

  • 当新的段文件生成(例如在写入数据或合并段时),这些新的段文件同样需要在首次访问时加载到内存中,这也可能导致第一次查询变慢。

解决方法,使用滚动索引,索引小一些。然后可以做forcemerge+触发查询加载。

5. 新的探索方向

以内存为代价的优化方案不具有扩展性。 如果需要将索引五分之一的数据都放在内存上,这需要非常大的开销。

应该探索其他的优化方案

5.1 探索1: 和向量相关的文件,是不是都需要预加载。做测试验证。

结论1走文件预加载,不做merge也可以生效。影响最大的是,预加载的时间长,体现在open索引的时候耗时就长。

结论2vec 文件占用空间最大,但是vec是必须加载的,否则无法提速,验证如下:

把上述5个索引,放在一个索引中,然后测试检索,耗时为73s。

注意本次未做merge,共373个segment。索引共有10个shard,如果做merge,应该是10个segment

5.1.1 其中 vem最小,先尝试只预加载这个文件

POST tilake_test_final/_closePUT /tilake_test_final/_settings
{"index": {"store": {"preload": ["vem"]}}
}POST tilake_test_final/_open

37s 时间有减半。(注意这里,需要换一个向量,否则会走到缓存上)

避免随机性,又换一个向量。45s。

5.1.2 再加入vex文件

POST tilake_test_final/_closePUT /tilake_test_final/_settings
{"index": {"store": {"preload": ["vem","vex"]}}
}POST tilake_test_final/_open

时间变短到19s

再测一组

5.1.3 加入vec文件

POST tilake_test_final/_closePUT /tilake_test_final/_settings
{"index": {"store": {"preload": ["vem","vex","vec"]}}
}
POST tilake_test_final/_open

查询验证,已经到了毫秒级,269毫秒。

再验证一组

这篇关于Elasticsearch向量检索(KNN)千万级耗时长问题分析与优化方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1108950

相关文章

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

SpringBoot监控API请求耗时的6中解决解决方案

《SpringBoot监控API请求耗时的6中解决解决方案》本文介绍SpringBoot中记录API请求耗时的6种方案,包括手动埋点、AOP切面、拦截器、Filter、事件监听、Micrometer+... 目录1. 简介2.实战案例2.1 手动记录2.2 自定义AOP记录2.3 拦截器技术2.4 使用Fi

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1