姿态识别+康复训练矫正+代码+部署

2024-08-26 15:20

本文主要是介绍姿态识别+康复训练矫正+代码+部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

YOLO-NAS姿势模型是对姿势估计领域的最新贡献。今年早些时候,Deci凭借其开创性的目标探测基础模型YOLO-NAS获得了广泛认可。在YOLO-NAS成功的基础上,该公司现在推出了YOLO-NAS Pose作为其Pose Estimation对应产品。这个姿势模型在延迟和准确性之间提供了一个极好的平衡。

姿态估计在计算机视觉中起着至关重要的作用,涵盖了广泛的重要应用。这些应用包括在医疗保健中监测患者的运动,分析运动员在运动中的表现,创建无缝人机界面,以及改进机器人系统。

  1.  YOLO-NAS姿势模型体系结构
  2. YOLO-NAS姿势的运行推断
  3. YOLO-NAS姿势vs/s YOLOv8姿势
  4. 姿势模特是如何训练的?
  5. YOLO-NAS姿势损失函数
  6. 训练超参数
  7. 结论
  8. 工具书类

YOLO-NAS姿势模型体系结构

传统的姿态估计模型遵循以下两种方法之一:

  1. 检测场景中的所有人,然后估计其关键点并创建姿势。两阶段自上而下的过程。
  2. 检测场景中的所有关键点,然后生成姿势。两阶段自下而上的过程。

与传统的姿势估计模型相比,YOLO-NAS姿势做的事情不同。它可以在一个步骤中一次性检测并估计出人及其姿势,而不是先检测出人然后再估计其姿势。

YOLO-NAS体式结构——骨干和颈部设计

Pose模型建立在YOLO-NAS目标检测体系结构。目标检测模型和姿势估计模型具有相同的骨架和颈部设计,但头部不同。YOLO-NAS姿势的头部是为其多任务目标设计的,即检测单个类别的物体(如人或动物)并估计物体的姿势。

这一令人印象深刻的组合是Deci专有的神经架构搜索(NAS)引擎AutoNAC的结果。它在广阔的建筑搜索空间中导航,并返回最佳的建筑设计。以下是用于搜索的超参数:

  • 姿势和长方体回归路径的Conv BN Relu块的数量。
  • 两条路径的中间通道数
  • 姿势/方框回归的共享主干或不同主干之间的决定

结果不言而喻

 Yolo NAS姿势估计

COCO Val 2017数据集的YOLO-NAS态势评估

YOLO-NAS姿势模型根据COCO Val 2017数据集进行评估。该模型的准确性和延迟是最先进的。纳米模型是最快的,在T4 GPU上可以达到425fps的推断速度。同时,大型模型可以达到113 fps。

如果我们看看边缘部署,nano和medium模型仍将分别以63fps和48fps的速度实时运行。但当我们看看Jetson Xavier NX上部署的中型和大型模型时,速度开始下降,分别达到26fps和20fps。这些仍然是一些可用的最佳结果。

YOLO-NAS姿势的运行推断

YOLO-NAS Pose模型、培训管道和笔记本可在SuperGradientsDeci开发的基于PyTorch的开放源码视觉库。您可以安装 超级坡度通过管道。

pip install 超级的-梯度

为了运行推断,我们将导入以下Python模块:

  • torch:导入 PyTorch公司框架。其基础是SuperGradients已生成
  • os:对于系统命令和目录操作很有用。
  • pathlib:用于获取文件路径和路径操作。
  • super_gradients:YOLO-NAS Pose模特的故乡。
import火炬
import操作系统
import 路径库
from超梯度训练import模型
from超梯度通用对象名称import模

现在我们需要一些图像来进行推断wget .

urls =[" http://upload.wikimedia.org/wikipedia/commons/4/4/B_B.jpg "," http://i.img.com/736x/5a/8a/5c/5a8a5c4cd658580ae4719e5c96043541.jpg ","https://mir-s3-cdn-cf.behance.net/project_modules/max_1200/4d222729493563.55f6420cd3768.jpg "
]
downloaded_files =[]
for索引,urlin列举(urls, start=1 ):操作系统(f"wget {url} -O pose-{index}.jpg" )downloaded_files.append(f"pose-{index}.jpg" )

我们在列表中添加一些图像URL,然后循环遍历列表并使用下载和重命名每个文件wget,并将文件路径附加到新列表下载的文件 .

接下来,我们得到了YOLO-NAS姿势模型。

model =models.get(“yolo-nas-pose-l”, pretrained_weights="coco_pose" )
device ='cuda'如果torch.cuda.is_available() 其他的'cpu'
model.to(device)

使用函数get()我们下载模型。传递模型名称,然后传递权重文件的路径。在我们的案例中,我们使用NAS Pose大型模型具有COCO预处理权重 .

然后,将此模型加载到GPU设备(如果可用)。这将大大加快推理速度。

现在,使用函数predict()对图像进行预测。

confidence =0.6
model.predict(downloaded_files[ zero], conf=confidence).show()

predict()接受图像和置信阈值作为输入,对模型进行推断。使用show()显示输出。

除了图像,predict()还接受以下内容作为输入:

SuperGradients也可以保存输出,而不是显示输出。

output_file =pathlib.Path(downloaded_files[ one]).stem +"-detections"+pathlib.Path(downloaded_files[ one]).suffix
model.predict(downloaded_files[ one], conf=confidence).save(output_file)

YOLO-NAS位姿估计预测

 这两种方法都会在输入图像或视频上绘制结果。如果您只想得到结果:

	
preds =model.predict(downloaded_files[ two], conf=confidence)

原始预测如下:

  • XYXY格式的边界框预测
  • 预测对象的检测得分
  • 17 XY格式的关键点预测
  • 每个关键点的置信度得分

初始后处理步骤应包括对方框检测和姿势预测应用非最大抑制,为您提供一组高置信度预测。然后选择匹配的框和姿势,它们一起构成模型输出。由于对模型进行了训练,以确保盒子检测和姿势预测发生在同一空间位置,因此保持了它们的一致性。

YOLO-NAS姿势vs/s YOLOv8姿势

YOLO-NAS姿势与YOLOv8姿势有效边界图绘制

上图是YOLO-NAS姿势和YOLOv8姿势模型。此空间也称为效率前沿。所有模型均在COCO Val 2017数据集和Intel Xeon第4代CPU上进行评估,具有1批大小和16位浮点操作。

所有YOLO-NAS姿势模型的准确性都高于YOLOv8姿势模型。这可以被认可为AutoNAC的头部设计。现在,让我们谈谈具体情况:

较小的YOLO-NAS Pose模型,即nano和small,虽然精度较高,但比YOLOv8 Pose模型慢。
较大的YOLO-NAS姿势模型,如中型和大型,在准确性和延迟方面都更好。
现在,如果我们想深入研究,这里是COCO Val 2017数据集上YOLO-NAS姿势和YOLOv8姿势模型的结果。

COCO Val 2017数据集上的YOLO-NAS姿势与YOLOv8姿势评估

YOLO-NAS姿势模型的准确性始终优于相应的YOLOv8姿势模型。让我们看看具体情况:

  • 相应模型的参数数量不相似。例如,NAS Nano有990万个参数,而v8 Nano有330万个参数。这是三分之一的差异。
  • 此外,推理运行硬件也不同。NAS在2018年9月发布的T4 GPU上发布了结果,而v8在更新的A100 GPU上公布了结果。

如果你想让我对这两个姿势模型进行比较分析,请留言。

姿势模特是如何训练的?
YOLO-NAS姿势损失函数
为了确保模型能够有效地学习这两项任务,Deci改进了培训中使用的损失函数。而不仅仅是考虑IoU(交叉路口)为指定的盒子打分,我们还将对象关键点相似性(OKS)分数,将预测的关键点与实际的关键点进行比较。这一变化鼓励模型对边界框和姿态估计进行准确的预测。

此外,使用了直接OKS回归技术,这超过了传统的L1/L2损失方法。这种方法有几个优点:

它在0到1的范围内运行,类似于方框IoU,表明姿势有多相似。
它考虑到在注释特定关键点时不同程度的困难。每个关键点都与一个独特的sigma分数相关联,它反映了注释和数据集细节的准确性。分数决定了模型因预测不准确而受到的惩罚程度。
使用与验证指标一致的损失函数,从而实现指标的目标确定和优化。
训练超参数
因为,YOLO-NAS姿势采用了与YOLO-NA模型相似的基础结构来自YOLO-NAS的预处理重量用于在进行最终训练之前初始化模型的主干和颈部。以下是训练超参数:

训练硬件:使用8个NVIDIA GeForce RTX 3090 GPU和PyTorch 2.0。
培训时间表:培训时间长达1000个时期,如果在过去100个时期内表现没有改善,则提前停止。
优化器:使用带余弦LR(学习率)衰减的AdamW,在训练结束时将LR降低0.05倍。
重量衰减:重量衰减系数为0.000001,不包括偏置层和BatchNorm层。
EMA(指数移动平均)衰减:EMA衰减使用50的β因子。
图像分辨率:图像经过处理,最大边长为640像素,并填充到640×640的分辨率,填充颜色为(127127127)。
马赛克数据增强、随机90度旋转和颜色增强等增强进一步将AP提高了2。

结论
YOLO-NAS Pose是目前最好的姿势估计模型之一。在本文中,我们简要介绍了各种模型,了解了YOLO-NAS Pose模型体系结构和AutoNAC,并使用SuperGradients进行推理。

这篇关于姿态识别+康复训练矫正+代码+部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1108935

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

Vue实现路由守卫的示例代码

《Vue实现路由守卫的示例代码》Vue路由守卫是控制页面导航的钩子函数,主要用于鉴权、数据预加载等场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、概念二、类型三、实战一、概念路由守卫(Navigation Guards)本质上就是 在路

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型

Python屏幕抓取和录制的详细代码示例

《Python屏幕抓取和录制的详细代码示例》随着现代计算机性能的提高和网络速度的加快,越来越多的用户需要对他们的屏幕进行录制,:本文主要介绍Python屏幕抓取和录制的相关资料,需要的朋友可以参考... 目录一、常用 python 屏幕抓取库二、pyautogui 截屏示例三、mss 高性能截图四、Pill

使用MapStruct实现Java对象映射的示例代码

《使用MapStruct实现Java对象映射的示例代码》本文主要介绍了使用MapStruct实现Java对象映射的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、什么是 MapStruct?二、实战演练:三步集成 MapStruct第一步:添加 Mave