Python酷库之旅-第三方库Pandas(100)

2024-08-26 12:20

本文主要是介绍Python酷库之旅-第三方库Pandas(100),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、用法精讲

431、pandas.DataFrame.items方法

431-1、语法

431-2、参数

431-3、功能

431-4、返回值

431-5、说明

431-6、用法

431-6-1、数据准备

431-6-2、代码示例

431-6-3、结果输出

432、pandas.DataFrame.keys方法

432-1、语法

432-2、参数

432-3、功能

432-4、返回值

432-5、说明

432-6、用法

432-6-1、数据准备

432-6-2、代码示例

432-6-3、结果输出

433、pandas.DataFrame.iterrows方法

433-1、语法

433-2、参数

433-3、功能

433-4、返回值

433-5、说明

433-6、用法

433-6-1、数据准备

433-6-2、代码示例

433-6-3、结果输出

434、pandas.DataFrame.itertuples方法

434-1、语法

434-2、参数

434-3、功能

434-4、返回值

434-5、说明

434-6、用法

434-6-1、数据准备

434-6-2、代码示例

434-6-3、结果输出

435、pandas.DataFrame.pop方法

435-1、语法

435-2、参数

435-3、功能

435-4、返回值

435-5、说明

435-6、用法

435-6-1、数据准备

435-6-2、代码示例

435-6-3、结果输出

二、推荐阅读

1、Python筑基之旅

2、Python函数之旅

3、Python算法之旅

4、Python魔法之旅

5、博客个人主页

一、用法精讲

431、pandas.DataFrame.items方法
431-1、语法
# 431、pandas.DataFrame.items方法
pandas.DataFrame.items()
Iterate over (column name, Series) pairs.Iterates over the DataFrame columns, returning a tuple with the column name and the content as a Series.Yields:
label
object
The column names for the DataFrame being iterated over.content
Series
The column entries belonging to each label, as a Series.
431-2、参数

        无

431-3、功能

        返回一个生成器,它生成一个(column name, Series)元组,对于每个元组,column name是列的名称,而Series是该列的数据。

431-4、返回值

        返回一个迭代器,每次迭代会生成一个(column name, Series)对。

431-5、说明

        无

431-6、用法
431-6-1、数据准备
431-6-2、代码示例
# 431、pandas.DataFrame.items方法
import pandas as pd
# 创建一个简单的DataFrame
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6],'C': [7, 8, 9]
})
# 使用items()方法迭代DataFrame的列
for column_name, series in df.items():print(f"Column name: {column_name}")print(f"Column data:\n{series}\n")
431-6-3、结果输出
# 431、pandas.DataFrame.items方法
# Column name: A
# Column data:
# 0    1
# 1    2
# 2    3
# Name: A, dtype: int64
# 
# Column name: B
# Column data:
# 0    4
# 1    5
# 2    6
# Name: B, dtype: int64
# 
# Column name: C
# Column data:
# 0    7
# 1    8
# 2    9
# Name: C, dtype: int64
432、pandas.DataFrame.keys方法
432-1、语法
# 432、pandas.DataFrame.keys方法
pandas.DataFrame.keys()
Get the ‘info axis’ (see Indexing for more).This is index for Series, columns for DataFrame.Returns:
Index
Info axis.
432-2、参数

        无

432-3、功能

        返回一个包含列名的Index对象。

432-4、返回值

        返回一个pandas Index对象,其中包含DataFrame的所有列名。

432-5、说明

        无

432-6、用法
432-6-1、数据准备
432-6-2、代码示例
# 432、pandas.DataFrame.keys方法
import pandas as pd
# 创建一个简单的DataFrame
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6],'C': [7, 8, 9]
})
# 使用keys()方法获取DataFrame的列名
column_names = df.keys()
# 打印列名
print(column_names)
432-6-3、结果输出
# 432、pandas.DataFrame.keys方法
# Index(['A', 'B', 'C'], dtype='object')
433、pandas.DataFrame.iterrows方法
433-1、语法
# 433、pandas.DataFrame.iterrows方法
pandas.DataFrame.iterrows()
Iterate over DataFrame rows as (index, Series) pairs.Yields:
index
label or tuple of label
The index of the row. A tuple for a MultiIndex.data
Series
The data of the row as a Series.
433-2、参数

        无

433-3、功能

        逐行遍历DataFrame,并将每行的数据以Series的形式返回。

433-4、返回值

        返回一个迭代器对象,每次迭代返回一个(index,Series)对。

433-5、说明

433-5-1、iterrows()的性能相对较低,因为每行都被转换为一个pandas Series对象,这可能会导致在处理大型DataFrame时的效率低下。

433-5-2、DataFrame中的dtypes可能在iterrows()过程中发生变化,因为每行返回的Series可能会自动转换为最适合存储该行数据的dtype。

433-5-3、如果需要更高效地遍历行,可以考虑使用DataFrame.itertuples(),它返回的是命名元组,性能更佳。

433-6、用法
433-6-1、数据准备
433-6-2、代码示例
# 433、pandas.DataFrame.iterrows方法
import pandas as pd
# 创建一个简单的DataFrame
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6],'C': [7, 8, 9]
})
# 使用iterrows方法遍历DataFrame的每一行
for index, row in df.iterrows():print(f"Index: {index}")print(f"Row data:\n{row}\n")
433-6-3、结果输出
# 433、pandas.DataFrame.iterrows方法
# Index: 0
# Row data:
# A    1
# B    4
# C    7
# Name: 0, dtype: int64
# 
# Index: 1
# Row data:
# A    2
# B    5
# C    8
# Name: 1, dtype: int64
# 
# Index: 2
# Row data:
# A    3
# B    6
# C    9
# Name: 2, dtype: int64
434、pandas.DataFrame.itertuples方法
434-1、语法
# 434、pandas.DataFrame.itertuples方法
pandas.DataFrame.itertuples(index=True, name='Pandas')
Iterate over DataFrame rows as namedtuples.Parameters:
index
bool, default True
If True, return the index as the first element of the tuple.name
str or None, default “Pandas”
The name of the returned namedtuples or None to return regular tuples.Returns:
iterator
An object to iterate over namedtuples for each row in the DataFrame with the first field possibly being the index and following fields being the column values.
434-2、参数

434-2-1、index(可选,默认值为True)指定是否在返回的命名元组中包含DataFrame的行索引(即行标签)。当index=True时,返回的命名元组的第一个元素将是该行的索引(即行标签);当index=False时,索引不会包含在返回的命名元组中,只返回列的数据。

434-2-2、name(可选,默认值为'Pandas')指定返回的命名元组的名称,该参数允许你为返回的命名元组指定一个自定义的名称,如果将name=None,则返回的是普通的元组,而不是命名元组。

434-3、功能

        用于生成DataFrame每行的一个命名元组,并提供了可选参数用于定制返回的命名元组结构。

434-4、返回值

        返回一个生成器,每次迭代生成一个表示DataFrame一行数据的命名元组或普通元组(取决于name参数),命名元组的字段名与DataFrame的列标签相对应,当index=True时,第一个字段名为Index,表示行索引。

434-5、说明

434-5-1、性能优势:itertuples()比iterrows()更高效,特别是在处理大规模数据时,建议使用itertuples()。

434-5-2、字段名称限制:DataFrame列标签在命名元组中会转换为有效的Python标识符,如果列名中有非法字符(如空格、数字开头等),这些字符会被替换或忽略。

434-5-3、无法修改数据:使用itertuples()只能读取数据,而不能直接修改DataFrame的数据。

434-6、用法
434-6-1、数据准备
434-6-2、代码示例
# 434、pandas.DataFrame.itertuples方法
import pandas as pd
# 创建一个简单的DataFrame
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6],'C': [7, 8, 9]
})
# 使用itertuples方法遍历DataFrame的每一行,包含索引并命名元组为'Pandas'
for row in df.itertuples(index=True, name='Pandas'):print(row)
# 使用itertuples方法遍历DataFrame的每一行,不包含索引并命名元组为'CustomName'
for row in df.itertuples(index=False, name='CustomName'):print(row)
434-6-3、结果输出
# 434、pandas.DataFrame.itertuples方法
# Pandas(Index=0, A=1, B=4, C=7)
# Pandas(Index=1, A=2, B=5, C=8)
# Pandas(Index=2, A=3, B=6, C=9)
# CustomName(A=1, B=4, C=7)
# CustomName(A=2, B=5, C=8)
# CustomName(A=3, B=6, C=9)
435、pandas.DataFrame.pop方法
435-1、语法
# 435、pandas.DataFrame.pop方法
pandas.DataFrame.pop(item)
Return item and drop from frame. Raise KeyError if not found.Parameters:
item
label
Label of column to be popped.Returns:
Series
435-2、参数

435-2-1、item(必须)字符串,指定要移除的列的名称(即列标签),该参数必须是DataFrame中存在的列名,否则会引发KeyError。

435-3、功能

        用于移除DataFrame中的指定列(以列标签的方式指定),该方法不仅会从DataFrame中删除这个列,还会将其作为一个Series返回。

435-4、返回值

        返回被移除的列的数据,以Series的形式。

435-5、说明

435-5-1、列名必须存在:pop()方法要求item参数指定的列名必须存在于DataFrame中,否则会引发KeyError。

435-5-2、不可逆操作:pop()是一个不可逆操作,一旦执行该操作并删除了列后,如果没有保存返回的Series数据,就无法恢复该列。

435-5-3、直接修改DataFrame:pop()方法直接修改调用该方法的DataFrame,会实质性地移除指定的列。

435-5-4、性能:相对来说,pop()比在删除列后重新赋值更高效,因为它会直接修改原始的数据结构。

435-6、用法
435-6-1、数据准备
435-6-2、代码示例
# 435、pandas.DataFrame.pop方法
import pandas as pd
# 创建一个示例DataFrame
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6],'C': [7, 8, 9]
})
# 输出原始DataFrame
print("原始DataFrame:")
print(df)
# 使用pop方法移除列'B'
removed_column = df.pop('B')
# 输出被移除的列
print("\n被移除的列'B':")
print(removed_column)
# 输出移除列'B'后的DataFrame
print("\n移除列后DataFrame:")
print(df)
435-6-3、结果输出
# 435、pandas.DataFrame.pop方法
# 原始DataFrame:
#    A  B  C
# 0  1  4  7
# 1  2  5  8
# 2  3  6  9
# 
# 被移除的列'B':
# 0    4
# 1    5
# 2    6
# Name: B, dtype: int64
# 
# 移除列后DataFrame:
#    A  C
# 0  1  7
# 1  2  8
# 2  3  9

二、推荐阅读

1、Python筑基之旅
2、Python函数之旅
3、Python算法之旅
4、Python魔法之旅
5、博客个人主页

这篇关于Python酷库之旅-第三方库Pandas(100)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1108551

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3