【RAG】FastEmbed:一种轻量的快速文本嵌入工具

2024-08-26 10:52

本文主要是介绍【RAG】FastEmbed:一种轻量的快速文本嵌入工具,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在进行文本嵌入时,尤其是RAG系统,有一个快速高效的文本嵌入工具是非常有必要的。因此,FastEmbed设计目标是提升计算效率,同时保持嵌入表示的质量。此外,FastEmbed还支持一些图像嵌入模型。

FastEmbed暂时支持模型一览(截止2024.08.20)

特点:

  • 高效的计算速度,适合大规模数据处理;使用ONNX Runtime实现最优性能。
  • 低资源消耗,适用于多种设备和环境。FastEmbed刻意减少了对外部资源的依赖,并选择了ONNX Runtime作为其运行时框架。
  • 灵活性强,可应用于不同的 NLP 任务。
  • 兼容GPU,支持GPU加速计算,进一步提升效率。

使用

安装

# CPU版
pip install fastembed# GPU版
pip install fastembed-gpu
from fastembed import TextEmbedding
from typing import List# Example list of documents
documents: List[str] = ["This is built to be faster and lighter than other embedding libraries e.g. Transformers, Sentence-Transformers, etc.","fastembed is supported by and maintained by Qdrant.",
]# This will trigger the model download and initialization
embedding_model = TextEmbedding()
print("The model BAAI/bge-small-en-v1.5 is ready to use.")embeddings_generator = embedding_model.embed(documents)  # reminder this is a generator
embeddings_list = list(embedding_model.embed(documents))
# you can also convert the generator to a list, and that to a numpy array
print(len(embeddings_list[0]) ) # Vector of 384 dimensions

密集文本嵌入

from fastembed import TextEmbeddingmodel = TextEmbedding(model_name="BAAI/bge-small-en-v1.5")
embeddings = list(model.embed(documents))# [
#   array([-0.1115,  0.0097,  0.0052,  0.0195, ...], dtype=float32),
#   array([-0.1019,  0.0635, -0.0332,  0.0522, ...], dtype=float32)
# ]

稀疏文本嵌入

SPLADE++

from fastembed import SparseTextEmbeddingmodel = SparseTextEmbedding(model_name="prithivida/Splade_PP_en_v1")
embeddings = list(model.embed(documents))# [
#   SparseEmbedding(indices=[ 17, 123, 919, ... ], values=[0.71, 0.22, 0.39, ...]),
#   SparseEmbedding(indices=[ 38,  12,  91, ... ], values=[0.11, 0.22, 0.39, ...])
# ]

图像嵌入

from fastembed import ImageEmbeddingimages = ["./path/to/image1.jpg","./path/to/image2.jpg",
]model = ImageEmbedding(model_name="Qdrant/clip-ViT-B-32-vision")
embeddings = list(model.embed(images))# [
#   array([-0.1115,  0.0097,  0.0052,  0.0195, ...], dtype=float32),
#   array([-0.1019,  0.0635, -0.0332,  0.0522, ...], dtype=float32)
# ]

参考文献

https://github.com/qdrant/fastembed

往期相关

这篇关于【RAG】FastEmbed:一种轻量的快速文本嵌入工具的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1108359

相关文章

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

基于Python实现简易视频剪辑工具

《基于Python实现简易视频剪辑工具》这篇文章主要为大家详细介绍了如何用Python打造一个功能完备的简易视频剪辑工具,包括视频文件导入与格式转换,基础剪辑操作,音频处理等功能,感兴趣的小伙伴可以了... 目录一、技术选型与环境搭建二、核心功能模块实现1. 视频基础操作2. 音频处理3. 特效与转场三、高

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

sqlite3 命令行工具使用指南

《sqlite3命令行工具使用指南》本文系统介绍sqlite3CLI的启动、数据库操作、元数据查询、数据导入导出及输出格式化命令,涵盖文件管理、备份恢复、性能统计等实用功能,并说明命令分类、SQL语... 目录一、启动与退出二、数据库与文件操作三、元数据查询四、数据操作与导入导出五、查询输出格式化六、实用功

Linux如何快速检查服务器的硬件配置和性能指标

《Linux如何快速检查服务器的硬件配置和性能指标》在运维和开发工作中,我们经常需要快速检查Linux服务器的硬件配置和性能指标,本文将以CentOS为例,介绍如何通过命令行快速获取这些关键信息,... 目录引言一、查询CPU核心数编程(几C?)1. 使用 nproc(最简单)2. 使用 lscpu(详细信