ffplay源码分析(二)结构体VideoState

2024-08-26 10:20

本文主要是介绍ffplay源码分析(二)结构体VideoState,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在多媒体的世界里,播放器是离用户最近的一环,它将数字编码的音频和视频数据转化为生动的视听体验。ffplay 播放器作为一款强大而备受关注的工具,其背后隐藏着一系列精妙的结构体,它们协同工作,共同完成了从数据读取、解码、渲染到最终呈现的复杂流程。

以下是播放器的一个简单的流程,
在这里插入图片描述

当我们启动 ffplay 播放器,它首先会与数据源建立连接,无论是本地文件、网络流还是其他输入源。。紧接着,数据被源源不断地送入解码器,将压缩编码的数据转换为可处理的原始格式。

在这一流程中,各种关键的结构体开始发挥作用。它们像是精心设计的齿轮,紧密咬合,驱动着播放器的每一个环节。分析源码时,结构体就像是源码的目录,可以对整个播放器的运作流程有一个简单的理解。所以看这部分的内容时,不用纠结于每一个字段的意义,有一个大概的印象即可。

ffplay的核心:VideoState

以下是添加了详细注释的结构体 VideoState

typedef struct VideoState {SDL_Thread *read_tid;     // 读线程的线程IDconst AVInputFormat *iformat;     // 输入格式int abort_request;    // 中断请求标志int force_refresh;     // 强制刷新标志int paused;           // 播放是否暂停标志int last_paused;      // 上一次的暂停状态int queue_attachments_req; // 是否请求附带图片(如MP3或AAC文件的专辑封面等)int seek_req;         // 是否请求跳转int seek_flags;       // 跳转标志int64_t seek_pos;     // 跳转位置int64_t seek_rel;     // 跳转相对位置int read_pause_return; // 发送暂停请求的结果(例如RTSP暂停消息是否成功)AVFormatContext *ic;     // 格式上下文int realtime;         // 是否为实时播放Clock audclk;         // 音频时钟Clock vidclk;         // 视频时钟Clock extclk;         // 外部时钟FrameQueue pictq;     // 图像帧队列FrameQueue subpq;     // 字幕帧队列FrameQueue sampq;     // 音频采样帧队列Decoder auddec;       // 音频解码器Decoder viddec;       // 视频解码器Decoder subdec;       // 字幕解码器/*******************音视频同步相关************************/int audio_stream;     // 音频流的索引int av_sync_type;     // 音视频同步类型double audio_clock;   // 当前音频时钟值int audio_clock_serial; // 音频时钟序列号double audio_diff_cum; // 音频差异累计值(用于计算平均差异)double audio_diff_avg_coef; // 音频差异平均系数double audio_diff_threshold; // 音频差异阈值int audio_diff_avg_count;    // 音频差异平均计数AVStream *audio_st;  // 音频流PacketQueue audioq;  // 音频包队列int audio_hw_buf_size;  // 音频硬件缓冲区大小uint8_t *audio_buf;     // 音频缓冲区uint8_t *audio_buf1;    // 重采样音频缓冲区unsigned int audio_buf_size; // 音频缓冲区大小(字节)unsigned int audio_buf1_size; // 重采样音频缓冲区大小(字节)int audio_buf_index;   // 音频缓冲区播放位置int audio_write_buf_size; // 当前音频缓冲区中未播放的数据大小int audio_volume;      // 音频音量int muted;             // 是否静音struct AudioParams audio_src; // 音频源参数struct AudioParams audio_filter_src; // 音频滤波源参数struct AudioParams audio_tgt; // 音频目标参数struct SwrContext *swr_ctx;  // 音频重采样上下文int frame_drops_early; // 解码器队列中由于同步问题而提前丢弃的帧int frame_drops_late;  // 由于播放延迟而丢弃的帧enum ShowMode {SHOW_MODE_NONE = -1, SHOW_MODE_VIDEO = 0, SHOW_MODE_WAVES, SHOW_MODE_RDFT, SHOW_MODE_NB} show_mode;          // 显示模式/*******************音频可视化相关************************/int16_t sample_array[SAMPLE_ARRAY_SIZE]; // 音频可视化数据int sample_array_index;  // 音频可视化数据索引int last_i_start; // 上一次计算的音频显示起始索引AVTXContext *rdft;     // 快速傅里叶变换上下文av_tx_fn rdft_fn;     // 快速傅里叶变换函数指针int rdft_bits;       // 快速傅里叶变换的位数float *real_data;    // 实部数据AVComplexFloat *rdft_data; // 复数数据int xpos;            // x 位置double last_vis_time; // 上一次可视化时间/*******************渲染纹理相关************************/SDL_Texture *vis_texture; // 音频可视化纹理SDL_Texture *sub_texture; // 字幕纹理SDL_Texture *vid_texture; // 视频纹理int subtitle_stream; // 字幕流的索引AVStream *subtitle_st; // 字幕流PacketQueue subtitleq; // 字幕包队列double frame_timer;  // 帧定时器double frame_last_returned_time; // 上一帧的显示时间戳double frame_last_filter_delay; // 上一帧的滤镜延迟int video_stream;    // 视频流的索引AVStream *video_st;  // 视频流PacketQueue videoq;  // 视频包队列double max_frame_duration; // 最大帧持续时间struct SwsContext *sub_convert_ctx; // 字幕转换上下文int eof;             // 文件结束标志char *filename;      // 文件名int width;          // 播放窗口宽度int height;         // 播放窗口高度int xleft;          // 显示区域的左偏移int ytop;           // 显示区域的上偏移int step;           // 步进模式(单帧模式)int vfilter_idx;    // 视频滤镜索引AVFilterContext *in_video_filter; // 视频输入滤镜上下文AVFilterContext *out_video_filter; // 视频输出滤镜上下文AVFilterContext *in_audio_filter; // 音频输入滤镜上下文AVFilterContext *out_audio_filter; // 音频输出滤镜上下文AVFilterGraph *agraph; // 音频滤镜图int last_video_stream; // 上一次的视频流索引int last_audio_stream; // 上一次的音频流索引int last_subtitle_stream; // 上一次的字幕流索引SDL_cond *continue_read_thread; // 读线程条件变量
} VideoState;

这篇关于ffplay源码分析(二)结构体VideoState的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1108289

相关文章

Vite 打包目录结构自定义配置小结

《Vite打包目录结构自定义配置小结》在Vite工程开发中,默认打包后的dist目录资源常集中在asset目录下,不利于资源管理,本文基于Rollup配置原理,本文就来介绍一下通过Vite配置自定义... 目录一、实现原理二、具体配置步骤1. 基础配置文件2. 配置说明(1)js 资源分离(2)非 JS 资

Java集合中的链表与结构详解

《Java集合中的链表与结构详解》链表是一种物理存储结构上非连续的存储结构,数据元素的逻辑顺序的通过链表中的引用链接次序实现,文章对比ArrayList与LinkedList的结构差异,详细讲解了链表... 目录一、链表概念与结构二、当向单链表的实现2.1 准备工作2.2 初始化链表2.3 打印数据、链表长

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

创建springBoot模块没有目录结构的解决方案

《创建springBoot模块没有目录结构的解决方案》2023版IntelliJIDEA创建模块时可能出现目录结构识别错误,导致文件显示异常,解决方法为选择模块后点击确认,重新校准项目结构设置,确保源... 目录创建spChina编程ringBoot模块没有目录结构解决方案总结创建springBoot模块没有目录

SpringBoot利用树形结构优化查询速度

《SpringBoot利用树形结构优化查询速度》这篇文章主要为大家详细介绍了SpringBoot利用树形结构优化查询速度,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一个真实的性能灾难传统方案为什么这么慢N+1查询灾难性能测试数据对比核心解决方案:一次查询 + O(n)算法解决

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Oracle查询表结构建表语句索引等方式

《Oracle查询表结构建表语句索引等方式》使用USER_TAB_COLUMNS查询表结构可避免系统隐藏字段(如LISTUSER的CLOB与VARCHAR2同名字段),这些字段可能为dbms_lob.... 目录oracle查询表结构建表语句索引1.用“USER_TAB_COLUMNS”查询表结构2.用“a

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group