day41| 01背包问题一 01背包问题二(滚动数组篇)416. 分割等和子集 1049.最后一块石头的重量II 494. 目标和 474. 一和零

本文主要是介绍day41| 01背包问题一 01背包问题二(滚动数组篇)416. 分割等和子集 1049.最后一块石头的重量II 494. 目标和 474. 一和零,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 背景介绍
  • 01背包问题一
    • 思路
    • 方法一
    • 方法二
  • 01背包问题二(滚动数组篇)
    • 思路
    • 方法一
    • 方法二
  • 416. 分割等和子集
    • 思路
    • 方法一
  • 1049.最后一块石头的重量II
    • 思路
    • 方法一
  • 494. 目标和
    • 思路
    • 方法
    • 方法二 回溯法
  • 474. 一和零
    • 思路
    • 方法
  • 总结


由于笔试的时候会判重,而这里面的代码都是我自己写的,所以以后的博客都要求会员才能看,感谢理解

背景介绍

在这里插入图片描述

01背包问题一

01背包问题:有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
暴力求解
每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是 o ( 2 n ) o(2^n) o(2n),这里的n表示物品数量。

所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!

思路

在这里插入图片描述
依然动规五部曲分析一波。

  1. ❤️确定dp数组以及下标的含义
    对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少
  2. ❤️确定递推公式
    在这里插入图片描述
  3. dp数组如何初始化
    首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。
    纵向初始化:dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。
    那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。
    当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。
    在这里插入图片描述
    这里还讲了一个其他位置的初始化:任意都可以,因为都会被覆盖
  4. 遍历顺序:两层for循环,
    先遍历 物品还是先遍历背包重量呢?
    其实都可以!! 但是先遍历物品更好理解。

    在这里插入图片描述

方法一

自己写的注意事项:

  1. 一开始没有完全理解,dp二维数组的列数是bagweight,而不是len(weight)
  2. 写代码的时候一定是bagweight+1啊,因为bagweight是必须要算在里面的
  3. 此外,卡吗网输入的都是str类型要注意哦
def test_2_wei_bag_problem1(weight, value, bagweight):# 二维数组dp = [[0] * (bagweight + 1) for _ in range(len(weight))]# 初始化for j in range(weight[0], bagweight + 1):dp[0][j] = value[0]# weight数组的大小就是物品个数for i in range(1, len(weight)):  # 遍历物品for j in range(bagweight + 1):  # 遍历背包容量if j < weight[i]:dp[i][j] = dp[i - 1][j]else:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])return dp[len(weight) - 1][bagweight]if __name__ == "__main__":weight = [1, 3, 4]value = [15, 20, 30]bagweight = 4result 

这篇关于day41| 01背包问题一 01背包问题二(滚动数组篇)416. 分割等和子集 1049.最后一块石头的重量II 494. 目标和 474. 一和零的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1107796

相关文章

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁

MySQ中出现幻读问题的解决过程

《MySQ中出现幻读问题的解决过程》文章解析MySQLInnoDB通过MVCC与间隙锁机制在可重复读隔离级别下解决幻读,确保事务一致性,同时指出性能影响及乐观锁等替代方案,帮助开发者优化数据库应用... 目录一、幻读的准确定义与核心特征幻读 vs 不可重复读二、mysql隔离级别深度解析各隔离级别的实现差异

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.