从行或列的角度思考矩阵-向量乘法(matrix-vector multiplication)

本文主要是介绍从行或列的角度思考矩阵-向量乘法(matrix-vector multiplication),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

从行或列的角度思考矩阵-向量乘法可以帮助理解这个运算的几何意义以及如何在计算中操作。

1. 从行的角度思考

假设我们有一个 m × n m \times n m×n的矩阵 A A A 和一个 n × 1 n \times 1 n×1的列向量 x \mathbf{x} x。矩阵-向量乘法 A x A\mathbf{x} Ax 的结果是一个 m × 1 m \times 1 m×1的列向量。

从行的角度来看,每个结果向量的元素都是矩阵 A A A 中对应行的线性组合。具体地说:

  • 矩阵 A A A 的第 i i i 行向量 a i \mathbf{a}_i ai 与向量 x \mathbf{x} x 进行点积,得到结果向量 y \mathbf{y} y 的第 i i i 个元素 y i y_i yi
  • 公式表示为:
    y i = a i ⋅ x = ∑ j = 1 n a i j x j y_i = \mathbf{a}_i \cdot \mathbf{x} = \sum_{j=1}^{n} a_{ij} x_j yi=aix=j=1naijxj
  • 这意味着矩阵-向量乘法的结果 y \mathbf{y} y 是所有行向量与 x \mathbf{x} x点积后所得的列向量。

2. 从列的角度思考

同样,考虑矩阵 A A A和向量 x \mathbf{x} x的乘法 A x A\mathbf{x} Ax,但是从列的角度来看。

  • 矩阵 A A A可以表示为 n n n 个列向量 a 1 , a 2 , … , a n \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n a1,a2,,an的组合。
  • 乘法 A x A\mathbf{x} Ax 实际上是将列向量 a i \mathbf{a}_i ai 乘以标量 x i x_i xi 并求和:
    A x = x 1 a 1 + x 2 a 2 + ⋯ + x n a n A\mathbf{x} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_n \mathbf{a}_n Ax=x1a1+x2a2++xnan
  • 这意味着矩阵-向量乘法的结果 y \mathbf{y} y是矩阵 A A A的每个列向量 a i \mathbf{a}_i ai x i x_i xi加权后的线性组合。

小结

  • 行视角:每个结果元素是矩阵行向量和列向量的点积。
  • 列视角:结果向量是矩阵列向量的线性组合,其中组合系数由列向量中的对应元素给出。

通过从行和列两个角度去理解矩阵-向量乘法,可以更深入地把握矩阵运算的本质以及其在不同应用场景中的几何意义。

这篇关于从行或列的角度思考矩阵-向量乘法(matrix-vector multiplication)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1107752

相关文章

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

C++ Primer 标准库vector示例详解

《C++Primer标准库vector示例详解》该文章主要介绍了C++标准库中的vector类型,包括其定义、初始化、成员函数以及常见操作,文章详细解释了如何使用vector来存储和操作对象集合,... 目录3.3标准库Vector定义和初始化vector对象通列表初始化vector对象创建指定数量的元素值

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

关于rpc长连接与短连接的思考记录

《关于rpc长连接与短连接的思考记录》文章总结了RPC项目中长连接和短连接的处理方式,包括RPC和HTTP的长连接与短连接的区别、TCP的保活机制、客户端与服务器的连接模式及其利弊分析,文章强调了在实... 目录rpc项目中的长连接与短连接的思考什么是rpc项目中的长连接和短连接与tcp和http的长连接短

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

【编程底层思考】垃圾收集机制,GC算法,垃圾收集器类型概述

Java的垃圾收集(Garbage Collection,GC)机制是Java语言的一大特色,它负责自动管理内存的回收,释放不再使用的对象所占用的内存。以下是对Java垃圾收集机制的详细介绍: 一、垃圾收集机制概述: 对象存活判断:垃圾收集器定期检查堆内存中的对象,判断哪些对象是“垃圾”,即不再被任何引用链直接或间接引用的对象。内存回收:将判断为垃圾的对象占用的内存进行回收,以便重新使用。

hdu 6198 dfs枚举找规律+矩阵乘法

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description We define a sequence  F : ⋅   F0=0,F1=1 ; ⋅   Fn=Fn