电路笔记(PCB):数字滤波电路的拉普拉斯变换与零极点分析

2024-08-26 05:04

本文主要是介绍电路笔记(PCB):数字滤波电路的拉普拉斯变换与零极点分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

拉普拉斯变换基础

拉普拉斯变换

拉普拉斯变换是一种积分变换,用于将一个时间域的函数(通常是信号或系统的响应)转换为一个复频域的函数。这种变换可以简化许多微分方程和线性系统分析的过程。其定义为:
L { f ( t ) } = F ( s ) = ∫ 0 ∞ f ( t ) e − s t d t \mathcal{L}\{f(t)\} = F(s) = \int_{0}^{\infty} f(t) e^{-st} \, dt L{f(t)}=F(s)=0f(t)estdt

其中:

  • f ( t ) f(t) f(t) 是原始时间域函数。

  • F ( s ) F(s) F(s) 是拉普拉斯变换后的复频域函数。

  • s s s 是复数频率变量。

  • 时域中电路元件的基本关系

    • 电阻 R R R:电压 V ( t ) V(t) V(t) 和电流 I ( t ) I(t) I(t) 之间的关系是 V ( t ) = R ⋅ I ( t ) V(t) = R \cdot I(t) V(t)=RI(t)
    • 电感 L L L:电压 V ( t ) V(t) V(t) 和电流 I ( t ) I(t) I(t) 之间的关系是 V ( t ) = L d I ( t ) d t V(t) = L \frac{dI(t)}{dt} V(t)=LdtdI(t)
    • 电容 C C C:电压 V ( t ) V(t) V(t) 和电流 I ( t ) I(t) I(t) 之间的关系是 V ( t ) = 1 C ∫ I ( t ) d t V(t) = \frac{1}{C} \int I(t) \, dt V(t)=C1I(t)dt

拉普拉斯域中电路元件的基本关系

  • 拉普拉斯变换将时间导数转换为 s s s 的乘法,将积分转换为除以 s s s的操作。拉普拉斯变换将时间域中的导数转换为频域中的乘法操作。例如,对于一个函数 f ( t ) f(t) f(t),其一阶导数 f ′ ( t ) f'(t) f(t) 在拉普拉斯变换下变为 s F ( s ) − f ( 0 ) sF(s) - f(0) sF(s)f(0)。同样地,积分 ∫ 0 t f ( τ ) d τ \int_0^t f(\tau) \, d\tau 0tf(τ)dτ 在拉普拉斯变换下变为 1 s F ( s ) \frac{1}{s}F(s) s1F(s)。这样,拉普拉斯变换使得时间导数和积分在频域中变得更容易处理。
  1. 电阻 R R R

    • 在时域中, V ( t ) = R ⋅ I ( t ) V(t) = R \cdot I(t) V(t)=RI(t)
    • 拉普拉斯变换后, V ( s ) = R ⋅ I ( s ) V(s) = R \cdot I(s) V(s)=RI(s)
    • 阻抗定义为 Z ( s ) = V ( s ) I ( s ) = R Z(s) = \frac{V(s)}{I(s)} = R Z(s)=I(s)V(s)=R,这说明电阻的阻抗在拉普拉斯域中是一个常数 R R R
  2. 电感 L L L

    • 在时域中, V ( t ) = L d I ( t ) d t V(t) = L \frac{dI(t)}{dt} V(t)=LdtdI(t)
    • 拉普拉斯变换后, V ( s ) = L ⋅ s ⋅ I ( s ) − L ⋅ I ( 0 ) V(s) = L \cdot s \cdot I(s) - L \cdot I(0) V(s)=LsI(s)LI(0)
    • 如果电感的初始电流 I ( 0 ) = 0 I(0) = 0 I(0)=0,则 V ( s ) = L ⋅ s ⋅ I ( s ) V(s) = L \cdot s \cdot I(s) V(s)=LsI(s)
    • 阻抗定义为 Z ( s ) = V ( s ) I ( s ) = L ⋅ s Z(s) = \frac{V(s)}{I(s)} = L \cdot s Z(s)=I(s)V(s)=Ls
  3. 电容 C C C

    • 在时域中, V ( t ) = 1 C ∫ I ( t ) d t V(t) = \frac{1}{C} \int I(t) \, dt V(t)=C1I(t)dt
    • 拉普拉斯变换后, V ( s ) = 1 C ⋅ I ( s ) s − 1 C ⋅ I ( 0 ) s V(s) = \frac{1}{C} \cdot \frac{I(s)}{s} - \frac{1}{C} \cdot \frac{I(0)}{s} V(s)=C1sI(s)C1sI(0)
    • 如果电容的初始电压 V ( 0 ) = 0 V(0) = 0 V(0)=0,则 V ( s ) = 1 C ⋅ I ( s ) s V(s) = \frac{1}{C} \cdot \frac{I(s)}{s} V(s)=C1sI(s)
    • 阻抗定义为 Z ( s ) = V ( s ) I ( s ) = 1 s ⋅ C Z(s) = \frac{V(s)}{I(s)} = \frac{1}{s \cdot C} Z(s)=I(s)V(s)=sC1
    • 注: i ( t ) = C ∗ d V ( t ) d t i(t)=C*\frac{dV(t)}{dt} i(t)=CdtdV(t),也可得到 I ( s ) = C ∗ s ∗ V ( s ) I(s)=C*s* V(s) I(s)=CsV(s)
    • 注: s = j ω s=j\omega s=时,阻抗

滤波器的数学表示

  • 让我们首先强调拉普拉斯域和相量域中的阻抗概念:
    所有电气工程信号都存在于时域中,其中时间t是自变量。对于正弦信号,可以将时域信号转换为相量域对于不一定是正弦的一般信号,可以将时域信号转换为拉普拉斯域信号

系统传递函数

  • 滤波器的两端分别为输入电压(或电流)和输出电流(或电流),滤波器将一个复数映射到另一个复数。滤波器实际上构建了一个复数的映射关系,所以滤波器可以用一个复变量函数表示。

  • 零点(Zeros):系统的零点是使得系统传递函数的分子为零的复数值。它们决定了系统的频率响应在这些频率上的衰减特性。当 H ( z ) = 0 H(z) = 0 H(z)=0 时,意味着滤波器在频率为 0 时的增益为 0。在分贝(dB)尺度下,增益 Gain (dB) = 20 ⋅ log ⁡ 10 ( 0 ) = − ∞ dB \text{Gain (dB)} = 20 \cdot \log_{10}(0)=-\infty \text{ dB} Gain (dB)=20log10(0)= dB,这表示滤波器在 z z z处完全衰减信号。

  • 极点(Poles):系统的极点是使得系统传递函数的分母为零的复数值。极点影响系统的稳定性和响应速度。

  • 电路的传递函数 H ( s ) H(s) H(s)是输入信号和输出信号之间的关系在s域的表示。传递函数的形式为:

H ( s ) = A ( s ) B ( s ) = a m s m + a m − 1 s m − 1 + ⋯ + a 1 s + 1 b m s n + b m − 1 s n − 1 + ⋯ + b 1 s + 1 H(s) = \frac{A(s)}{B(s)}=\frac{a_ms^m+a_{m-1}s^{m-1}+\dots +a_1s+1 }{b_ms^n+b_{m-1}s^{n-1}+\dots +b_1s+1 } H(s)=B(s)A(s)=bmsn+bm1sn1++b1s+1amsm+am1sm1++a1s+1

  • 其中, A ( s ) A(s) A(s) 是分子多项式(与零点相关), B ( s ) B(s) B(s) 是分母多项式(与极点相关)。因式分解可得到:
    H ( s ) = A ( s ) B ( s ) = K ∗ Π i m ( s − z i ) Π j n ( s − p j ) H(s) = \frac{A(s)}{B(s)}=K*\frac{\Pi_{i}^{m}(s-z_i) }{\Pi_{j}^{n}(s-p_j) } H(s)=B(s)A(s)=KΠjn(spj)Πim(szi)

  • 因为复数乘法能够视为一种操作(长度倍增和角度增加),所以可以得到

∣ H ( s ) ∣ = K ∗ Π i = 1 m ( ∣ s − z i ∣ ) Π n = 1 j ( ∣ s − p j ∣ ) |H(s)| =K*\frac{\Pi_{i=1}^{m}(|s-z_i|) }{\Pi_{n=1}^{j}(|s-p_j|) } H(s)=KΠn=1j(spj)Πi=1m(szi)

∠ H ( s ) = ∑ i = 1 m ∠ ( s − z i ) − ∑ j = 1 n ∠ ( s − p i ) \angle H(s) = \sum _{i=1}^{m} \angle (s-z_i) - \sum _{j=1}^{n} \angle (s-p_i) H(s)=i=1m(szi)j=1n(spi)

  • 注:以上公式中 ∣ s − p j ∣ |s-p_j| spj为两个复数点的二维之间距离, ∠ ( s − p i ) \angle(s-p_i) (spi)为两个复数向量的夹角。

jw与H(jw)

  • 滤波器的 H ( j Ω ) H(j\Omega) H(jΩ) 是滤波器的频率响应,它描述了滤波器对不同频率成分的增益和相位响应。

  • j Ω j\Omega jΩ 表示频率变量,其中 Ω \Omega Ω 是角频率,单位为弧度每秒。

  • H ( j Ω ) H(j\Omega) H(jΩ) 是一个复数函数,其模值 ∣ H ( j Ω ) ∣ |H(j\Omega)| H(jΩ) 表示滤波器在频率 Ω \Omega Ω处的增益,而其相位 arg ⁡ ( H ( j Ω ) ) \arg(H(j\Omega)) arg(H(jΩ)) 表示该频率成分的相位移。

  • 这个频率响应可以通过傅里叶变换或拉普拉斯变换的频域分析方法得到,是滤波器设计与分析中的一个关键概念。

用零极点图分析电路

  • 一个零点产生+20db/Dec幅度变化和0到90°相位变化
  • 一个极点产生-20db/Dec幅度变化和0到90°相位变化
  • N个零极点的作用可以互相叠加
Layer 1 + - V i jw σ 零点 极点 C R H(s)= V o V o V i (s) (s) = sC 1 +R R sC 1 - dB w sC 1 w sC 1 90°

CG

  • 注意区分:上边的复频域和电路分析中向量法的复数域。相量特指用复数形式表示的正弦电压和正弦电流。 将几个同频率的正弦量相量用有向线段表示在同一个复平面中的方法称为正弦量的相量图表示法。 其中各正弦量相量的模对应其线段的长度, 辐角对应该线段与正向x轴之间的夹角。

这篇关于电路笔记(PCB):数字滤波电路的拉普拉斯变换与零极点分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1107624

相关文章

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景