【C++二分查找】2817. 限制条件下元素之间的最小绝对差

2024-08-26 03:12

本文主要是介绍【C++二分查找】2817. 限制条件下元素之间的最小绝对差,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文涉及的基础知识点

C++二分查找

LeetCode2817. 限制条件下元素之间的最小绝对差

给你一个下标从 0 开始的整数数组 nums 和一个整数 x 。
请你找到数组中下标距离至少为 x 的两个元素的 差值绝对值 的 最小值 。
换言之,请你找到两个下标 i 和 j ,满足 abs(i - j) >= x 且 abs(nums[i] - nums[j]) 的值最小。
请你返回一个整数,表示下标距离至少为 x 的两个元素之间的差值绝对值的 最小值 。
示例 1:
输入:nums = [4,3,2,4], x = 2
输出:0
解释:我们选择 nums[0] = 4 和 nums[3] = 4 。
它们下标距离满足至少为 2 ,差值绝对值为最小值 0 。
0 是最优解。
示例 2:
输入:nums = [5,3,2,10,15], x = 1
输出:1
解释:我们选择 nums[1] = 3 和 nums[2] = 2 。
它们下标距离满足至少为 1 ,差值绝对值为最小值 1 。
1 是最优解。
示例 3:
输入:nums = [1,2,3,4], x = 3
输出:3
解释:我们选择 nums[0] = 1 和 nums[3] = 4 。
它们下标距离满足至少为 3 ,差值绝对值为最小值 3 。
3 是最优解。
提示:
1 <= nums.length <= 105
1 <= nums[i] <= 109
0 <= x < nums.length

C++二分查找

不失一般性,不妨令i <= j,那么i i n in in [0,j-x]。
我们有序集合s记录nums[0…j-x],要使绝对差最小,有两种可能:
集合中小于nums[j]的最大值
集合中大于等于nums[j]的最小值。
it = s.lower_bound(nums[j])
it和–it分别指向这两个值。

代码

核心代码

class Solution {public:int minAbsoluteDifference(vector<int>& nums, int x) {set<int> s;int ret = 1000'000'000;for (int i = 0; i < nums.size(); i++) {const int end = i - x;if (end >= 0) {s.emplace(nums[end]);}auto it = s.lower_bound(nums[i]);if (s.end() != it) {ret = min(ret, *it - nums[i]);}if (s.begin() != it) {ret = min(ret, nums[i] - *(--it));}}return ret;}};

单元测试

	vector<int> nums;int x;TEST_METHOD(TestMethod11){nums = { 4, 3, 2, 4 }, x = 2;auto res = Solution().minAbsoluteDifference(nums, x);AssertEx(0, res);}TEST_METHOD(TestMethod12){nums = { 5,3,2,10,15 }, x =1;auto res = Solution().minAbsoluteDifference(nums, x);AssertEx(1, res);}TEST_METHOD(TestMethod13){nums = { 1,2,3,4 }, x = 3;auto res = Solution().minAbsoluteDifference(nums, x);AssertEx(3, res);}

扩展阅读

我想对大家说的话
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。
学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛
失败+反思=成功 成功+反思=成功

视频课程

先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【C++二分查找】2817. 限制条件下元素之间的最小绝对差的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1107388

相关文章

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C#高效实现Word文档内容查找与替换的6种方法

《C#高效实现Word文档内容查找与替换的6种方法》在日常文档处理工作中,尤其是面对大型Word文档时,手动查找、替换文本往往既耗时又容易出错,本文整理了C#查找与替换Word内容的6种方法,大家可以... 目录环境准备方法一:查找文本并替换为新文本方法二:使用正则表达式查找并替换文本方法三:将文本替换为图

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python中高级文本模式匹配与查找技术指南

《Python中高级文本模式匹配与查找技术指南》文本处理是编程世界的永恒主题,而模式匹配则是文本处理的基石,本文将深度剖析PythonCookbook中的核心匹配技术,并结合实际工程案例展示其应用,希... 目录引言一、基础工具:字符串方法与序列匹配二、正则表达式:模式匹配的瑞士军刀2.1 re模块核心AP

基于Python实现数字限制在指定范围内的五种方式

《基于Python实现数字限制在指定范围内的五种方式》在编程中,数字范围限制是常见需求,无论是游戏开发中的角色属性值、金融计算中的利率调整,还是传感器数据处理中的异常值过滤,都需要将数字控制在合理范围... 目录引言一、基础条件判断法二、数学运算巧解法三、装饰器模式法四、自定义类封装法五、NumPy数组处理