代码随想录训练营 Day38打卡 动态规划 part06 322. 零钱兑换 279. 完全平方数 139. 单词拆分

本文主要是介绍代码随想录训练营 Day38打卡 动态规划 part06 322. 零钱兑换 279. 完全平方数 139. 单词拆分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码随想录训练营 Day38打卡 动态规划 part06

一、力扣322. 零钱兑换

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。
你可以认为每种硬币的数量是无限的。
示例
输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1

题目中说每种硬币的数量是无限的,可以看出是典型的完全背包问题。

dp[j]:凑足总额为j所需钱币的最少个数为dp[j]

凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])

所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。

递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);

本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。

所以本题并不强调集合是组合还是排列。

以输入:coins = [1, 2, 5], amount = 5为例

在这里插入图片描述
dp[amount]为最终结果。

代码实现

class Solution:def coinChange(self, coins: List[int], amount: int) -> int:# 创建一个长度为 amount + 1 的 dp 数组,初始值为正无穷大(表示当前金额不可达)dp = [float('inf')] * (amount + 1)# 初始化 dp[0] 为 0,因为凑出金额 0 需要 0 个硬币dp[0] = 0# 遍历每一种硬币面额for coin in coins:  # 遍历硬币,相当于遍历物品# 对于当前硬币面额 coin,遍历背包容量从 coin 到 amountfor i in range(coin, amount + 1):  # 遍历背包容量# 如果 dp[i - coin] 不是正无穷大,表示金额 (i - coin) 可达if dp[i - coin] != float('inf'):# 更新 dp[i],取使用当前硬币和不使用当前硬币两种情况中的最小值dp[i] = min(dp[i - coin] + 1, dp[i])# 检查 dp[amount] 是否仍为正无穷大# 如果是,则表示没有办法凑出总金额,返回 -1if dp[amount] == float('inf'):return -1# 否则,返回凑出总金额所需的最少硬币个数return dp[amount]

力扣题目链接
题目文章讲解
题目视频讲解

二、力扣279. 完全平方数

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。
示例
输入:n = 12
输出:3
解释:12 = 4 + 4 + 4

完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?

dp[j]:和为j的完全平方数的最少数量为dp[j]

dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。

此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]);

已输入n为5例,dp状态图如下:
在这里插入图片描述
最后的dp[n]为最终结果。

class Solution:def numSquares(self, n: int) -> int:# 初始化 dp 数组,长度为 n + 1,初始值为正无穷大# dp[j] 表示和为 j 的完全平方数的最少数量dp = [float('inf')] * (n + 1)# dp[0] = 0,因为和为 0 需要 0 个完全平方数dp[0] = 0# 遍历所有可能的完全平方数for i in range(1, int(n ** 0.5) + 1):  # i 表示当前完全平方数的根,如 1, 2, 3, ..., sqrt(n)square = i * i  # 计算完全平方数# 遍历背包容量(即要凑的目标和)for j in range(square, n + 1):  # j 表示当前目标和,从 square 到 n# 更新 dp[j],选择使用当前完全平方数后的最小值dp[j] = min(dp[j - square] + 1, dp[j])# 返回和为 n 的完全平方数的最少数量return dp[n]

力扣题目链接
题目文章讲解
题目视频讲解

三、力扣139. 单词拆分

给你一个字符串 s 和一个字符串列表 wordDict 作为字典。如果可以利用字典中出现的一个或多个单词拼接出 s 则返回 true。
注意:不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。
示例
输入: s = “leetcode”, wordDict = [“leet”, “code”]
输出: true
解释: 返回 true 因为 “leetcode” 可以由 “leet” 和 “code” 拼接成。

单词就是物品,字符串s就是背包,单词能否组成字符串s,就是问物品能不能把背包装满。

拆分时可以重复使用字典中的单词,说明就是一个完全背包!

dp[i] : 字符串长度为i的话,dp[i]为true,表示可以拆分为一个或多个在字典中出现的单词。

而本题其实我们求的是排列数,为什么呢。 拿 s = “applepenapple”, wordDict = [“apple”, “pen”] 举例。

“apple”, “pen” 是物品,那么我们要求 物品的组合一定是 “apple” + “pen” + “apple” 才能组成 “applepenapple”。

以输入: s = “leetcode”, wordDict = [“leet”, “code”]为例,dp状态如图:

在这里插入图片描述
dp[s.size()]就是最终结果。

class Solution:def wordBreak(self, s: str, wordDict: List[str]) -> bool:# 将 wordDict 转换为一个集合,以便更快速地进行单词查找操作wordSet = set(wordDict)n = len(s)  # 获取字符串 s 的长度# 创建一个长度为 n + 1 的 dp 数组# dp[i] 表示字符串 s 的前 i 个字符是否可以被拆分成字典中的单词dp = [False] * (n + 1)# dp[0] 表示空字符串,空字符串被认为可以被拆分成字典中的单词dp[0] = True# 遍历字符串的每个位置 i(从 1 到 n),相当于动态规划中的“背包容量”for i in range(1, n + 1):# 对于每个位置 i,检查从 0 到 i 的所有前缀 s[0:j] 是否可以被拆分for j in range(i):# 如果 s 的前 j 个字符可以被拆分成单词(dp[j] 为 True)# 并且 s[j:i] 这一段字符串在 wordSet 中存在,则 dp[i] 也为 Trueif dp[j] and s[j:i] in wordSet:dp[i] = True  # 更新 dp[i] 为 True,表示 s[0:i] 可以被拆分成字典中的单词break  # 找到一个有效拆分后,停止当前循环,进入下一个 i# 最后返回 dp[n],即字符串 s 的前 n 个字符(即整个字符串)是否可以被拆分成字典中的单词return dp[n]

力扣题目链接
题目文章讲解
题目视频讲解

这篇关于代码随想录训练营 Day38打卡 动态规划 part06 322. 零钱兑换 279. 完全平方数 139. 单词拆分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1106757

相关文章

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL