代码随想录训练营 Day38打卡 动态规划 part06 322. 零钱兑换 279. 完全平方数 139. 单词拆分

本文主要是介绍代码随想录训练营 Day38打卡 动态规划 part06 322. 零钱兑换 279. 完全平方数 139. 单词拆分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码随想录训练营 Day38打卡 动态规划 part06

一、力扣322. 零钱兑换

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。
你可以认为每种硬币的数量是无限的。
示例
输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1

题目中说每种硬币的数量是无限的,可以看出是典型的完全背包问题。

dp[j]:凑足总额为j所需钱币的最少个数为dp[j]

凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])

所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。

递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);

本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。

所以本题并不强调集合是组合还是排列。

以输入:coins = [1, 2, 5], amount = 5为例

在这里插入图片描述
dp[amount]为最终结果。

代码实现

class Solution:def coinChange(self, coins: List[int], amount: int) -> int:# 创建一个长度为 amount + 1 的 dp 数组,初始值为正无穷大(表示当前金额不可达)dp = [float('inf')] * (amount + 1)# 初始化 dp[0] 为 0,因为凑出金额 0 需要 0 个硬币dp[0] = 0# 遍历每一种硬币面额for coin in coins:  # 遍历硬币,相当于遍历物品# 对于当前硬币面额 coin,遍历背包容量从 coin 到 amountfor i in range(coin, amount + 1):  # 遍历背包容量# 如果 dp[i - coin] 不是正无穷大,表示金额 (i - coin) 可达if dp[i - coin] != float('inf'):# 更新 dp[i],取使用当前硬币和不使用当前硬币两种情况中的最小值dp[i] = min(dp[i - coin] + 1, dp[i])# 检查 dp[amount] 是否仍为正无穷大# 如果是,则表示没有办法凑出总金额,返回 -1if dp[amount] == float('inf'):return -1# 否则,返回凑出总金额所需的最少硬币个数return dp[amount]

力扣题目链接
题目文章讲解
题目视频讲解

二、力扣279. 完全平方数

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。
示例
输入:n = 12
输出:3
解释:12 = 4 + 4 + 4

完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?

dp[j]:和为j的完全平方数的最少数量为dp[j]

dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。

此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]);

已输入n为5例,dp状态图如下:
在这里插入图片描述
最后的dp[n]为最终结果。

class Solution:def numSquares(self, n: int) -> int:# 初始化 dp 数组,长度为 n + 1,初始值为正无穷大# dp[j] 表示和为 j 的完全平方数的最少数量dp = [float('inf')] * (n + 1)# dp[0] = 0,因为和为 0 需要 0 个完全平方数dp[0] = 0# 遍历所有可能的完全平方数for i in range(1, int(n ** 0.5) + 1):  # i 表示当前完全平方数的根,如 1, 2, 3, ..., sqrt(n)square = i * i  # 计算完全平方数# 遍历背包容量(即要凑的目标和)for j in range(square, n + 1):  # j 表示当前目标和,从 square 到 n# 更新 dp[j],选择使用当前完全平方数后的最小值dp[j] = min(dp[j - square] + 1, dp[j])# 返回和为 n 的完全平方数的最少数量return dp[n]

力扣题目链接
题目文章讲解
题目视频讲解

三、力扣139. 单词拆分

给你一个字符串 s 和一个字符串列表 wordDict 作为字典。如果可以利用字典中出现的一个或多个单词拼接出 s 则返回 true。
注意:不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。
示例
输入: s = “leetcode”, wordDict = [“leet”, “code”]
输出: true
解释: 返回 true 因为 “leetcode” 可以由 “leet” 和 “code” 拼接成。

单词就是物品,字符串s就是背包,单词能否组成字符串s,就是问物品能不能把背包装满。

拆分时可以重复使用字典中的单词,说明就是一个完全背包!

dp[i] : 字符串长度为i的话,dp[i]为true,表示可以拆分为一个或多个在字典中出现的单词。

而本题其实我们求的是排列数,为什么呢。 拿 s = “applepenapple”, wordDict = [“apple”, “pen”] 举例。

“apple”, “pen” 是物品,那么我们要求 物品的组合一定是 “apple” + “pen” + “apple” 才能组成 “applepenapple”。

以输入: s = “leetcode”, wordDict = [“leet”, “code”]为例,dp状态如图:

在这里插入图片描述
dp[s.size()]就是最终结果。

class Solution:def wordBreak(self, s: str, wordDict: List[str]) -> bool:# 将 wordDict 转换为一个集合,以便更快速地进行单词查找操作wordSet = set(wordDict)n = len(s)  # 获取字符串 s 的长度# 创建一个长度为 n + 1 的 dp 数组# dp[i] 表示字符串 s 的前 i 个字符是否可以被拆分成字典中的单词dp = [False] * (n + 1)# dp[0] 表示空字符串,空字符串被认为可以被拆分成字典中的单词dp[0] = True# 遍历字符串的每个位置 i(从 1 到 n),相当于动态规划中的“背包容量”for i in range(1, n + 1):# 对于每个位置 i,检查从 0 到 i 的所有前缀 s[0:j] 是否可以被拆分for j in range(i):# 如果 s 的前 j 个字符可以被拆分成单词(dp[j] 为 True)# 并且 s[j:i] 这一段字符串在 wordSet 中存在,则 dp[i] 也为 Trueif dp[j] and s[j:i] in wordSet:dp[i] = True  # 更新 dp[i] 为 True,表示 s[0:i] 可以被拆分成字典中的单词break  # 找到一个有效拆分后,停止当前循环,进入下一个 i# 最后返回 dp[n],即字符串 s 的前 n 个字符(即整个字符串)是否可以被拆分成字典中的单词return dp[n]

力扣题目链接
题目文章讲解
题目视频讲解

这篇关于代码随想录训练营 Day38打卡 动态规划 part06 322. 零钱兑换 279. 完全平方数 139. 单词拆分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1106757

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python ORM神器之SQLAlchemy基本使用完全指南

《PythonORM神器之SQLAlchemy基本使用完全指南》SQLAlchemy是Python主流ORM框架,通过对象化方式简化数据库操作,支持多数据库,提供引擎、会话、模型等核心组件,实现事务... 目录一、什么是SQLAlchemy?二、安装SQLAlchemy三、核心概念1. Engine(引擎)

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python