TensorFlow实现Softmax回归

2024-08-25 17:28

本文主要是介绍TensorFlow实现Softmax回归,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原理

模型

相比线性回归,Softmax只多一个分类的操作,即预测结果由连续值变为离散值,为了实现这样的结果,我们可以使最后一层具有多个神经元,而输入不变,其结构如图所示:

为了实现分类,我们使用一个Softmax操作,Softmax函数能够将未规范化的预测变换为非负数并且总和为1,同时让模型保持可导的性质。 为了完成这一目标,我们首先对每个未规范化的预测求幂,这样可以确保输出非负。 为了确保最终输出的概率值总和为1,我们再让每个求幂后的结果除以它们的总和。

\hat{y}_j=\frac{exp(o_j)}{\Sigma_k exp(o_k)}

那么对于y的结果,可以采用如下的方式表示:

\hat{y}=Softmax(Wx+b)

由于softmax操作只改变大小的值,不改变大小次序,因此对输出使用Softmax操作后,仍然有

{argmax}_j \hat{y}_j={argmax}_j \hat{o}_j

损失函数

在分类问题中一般使用交叉熵损失函数,这样可以更好的使模型辨别正确的label,而不是每一个label都使用同样的权重判断损失。

结果的可视化

通过构建Animator图像化类和Accumulator累加类完成数据的可视化实现。

Animator类

class Animator:def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,ylim=None, xscale='linear', yscale='linear',fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,figsize=(3.5, 2.5)):if legend is None:legend = []d2l.use_svg_display()self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)if nrows * ncols == 1:self.axes = [self.axes, ]self.config_axes = lambda: d2l.set_axes(self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)self.X, self.Y, self.fmts = None, None, fmts

Accumulator类 

class Accumulator:def __init__(self, n):self.data = [0.0] * ndef add(self, *args):self.data = [a + float(b) for a, b in zip(self.data, args)]def reset(self):self.data = [0.0] * len(self.data)def __getitem__(self, idx):return self.data[idx]

读取数据集

为实现Softmax回归,我们首先引入相关的库并读取数据集。这里使用mnist数据集进行测试。

import tensorflow as tfbatch_size = 256
def load_data_fashion_mnist(batch_size, resize=None):mnist_train, mnist_test = tf.keras.datasets.fashion_mnist.load_data()process = lambda X, y: (tf.expand_dims(X, axis=3) / 255,tf.cast(y, dtype='int32'))resize_fn = lambda X, y: (tf.image.resize_with_pad(X, resize, resize) if resize else X, y)return (tf.data.Dataset.from_tensor_slices(process(*mnist_train)).batch(batch_size).shuffle(len(mnist_train[0])).map(resize_fn),tf.data.Dataset.from_tensor_slices(process(*mnist_test)).batch(batch_size).map(resize_fn)) 
train_iter, test_iter = load_data_fashion_mnist(batch_size)

初始化模型参数

首先用Sequential构建一个模型容器,然后添加一个Flatten层将28x28的输入展平,然后添加一个全连接层获得输出。

net = tf.keras.models.Sequential()
net.add(tf.keras.layers.Flatten(input_shape=(28, 28)))
weight_initializer = tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.01)
net.add(tf.keras.layers.Dense(10, kernel_initializer=weight_initializer))

模型训练

首先定义一个损失函数,这里使用稀疏类别交叉熵损失函数,适应标签是整数而不是独热编码的情况,然后定义训练模型,采用小批量随机梯度下降(SGD)算法进行训练。

loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
trainer = tf.keras.optimizers.SGD(learning_rate=.1)
num_epochs = 10

接下来定义模型的训练具体方式,对每一轮采用随机梯度下降的后向计算方式,进行具体的训练。其中train_epoch_ch3是在一轮中进行训练,train_ch3是整体的训练过程。

def train_epoch_ch3(net, train_iter, loss, updater):metric = Accumulator(3)for X, y in train_iter:with tf.GradientTape() as tape:y_hat = net(X)if isinstance(loss, tf.keras.losses.Loss):l = loss(y, y_hat)else:l = loss(y_hat, y)if isinstance(updater, tf.keras.optimizers.Optimizer):params = net.trainable_variablesgrads = tape.gradient(l, params)updater.apply_gradients(zip(grads, params))else:updater(X.shape[0], tape.gradient(l, updater.params))l_sum = l * float(tf.size(y)) if isinstance(loss, tf.keras.losses.Loss) else tf.reduce_sum(l)metric.add(l_sum, accuracy(y_hat, y), tf.size(y))return metric[0] / metric[2], metric[1] / metric[2]def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],legend=['train loss', 'train acc', 'test acc'])for epoch in range(num_epochs):train_metrics = train_epoch_ch3(net, train_iter, loss, updater)test_acc = evaluate_accuracy(net, test_iter)animator.add(epoch + 1, train_metrics + (test_acc,))train_loss, train_acc = train_metricsassert train_loss < 0.5, train_lossassert train_acc <= 1 and train_acc > 0.7, train_accassert test_acc <= 1 and test_acc > 0.7, test_acc

最后调用函数直接进行训练,需要注意的是,不必调用train_epoch_ch3函数,他在训练过程中是自动调用的。

train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

训练结果

在刚刚的训练过程中我们使用了animator和accumulator来可视化训练结果,因此训练结果较为直观,如图所示:

这篇关于TensorFlow实现Softmax回归的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1106186

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S