TensorFlow实现Softmax回归

2024-08-25 17:28

本文主要是介绍TensorFlow实现Softmax回归,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原理

模型

相比线性回归,Softmax只多一个分类的操作,即预测结果由连续值变为离散值,为了实现这样的结果,我们可以使最后一层具有多个神经元,而输入不变,其结构如图所示:

为了实现分类,我们使用一个Softmax操作,Softmax函数能够将未规范化的预测变换为非负数并且总和为1,同时让模型保持可导的性质。 为了完成这一目标,我们首先对每个未规范化的预测求幂,这样可以确保输出非负。 为了确保最终输出的概率值总和为1,我们再让每个求幂后的结果除以它们的总和。

\hat{y}_j=\frac{exp(o_j)}{\Sigma_k exp(o_k)}

那么对于y的结果,可以采用如下的方式表示:

\hat{y}=Softmax(Wx+b)

由于softmax操作只改变大小的值,不改变大小次序,因此对输出使用Softmax操作后,仍然有

{argmax}_j \hat{y}_j={argmax}_j \hat{o}_j

损失函数

在分类问题中一般使用交叉熵损失函数,这样可以更好的使模型辨别正确的label,而不是每一个label都使用同样的权重判断损失。

结果的可视化

通过构建Animator图像化类和Accumulator累加类完成数据的可视化实现。

Animator类

class Animator:def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,ylim=None, xscale='linear', yscale='linear',fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,figsize=(3.5, 2.5)):if legend is None:legend = []d2l.use_svg_display()self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)if nrows * ncols == 1:self.axes = [self.axes, ]self.config_axes = lambda: d2l.set_axes(self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)self.X, self.Y, self.fmts = None, None, fmts

Accumulator类 

class Accumulator:def __init__(self, n):self.data = [0.0] * ndef add(self, *args):self.data = [a + float(b) for a, b in zip(self.data, args)]def reset(self):self.data = [0.0] * len(self.data)def __getitem__(self, idx):return self.data[idx]

读取数据集

为实现Softmax回归,我们首先引入相关的库并读取数据集。这里使用mnist数据集进行测试。

import tensorflow as tfbatch_size = 256
def load_data_fashion_mnist(batch_size, resize=None):mnist_train, mnist_test = tf.keras.datasets.fashion_mnist.load_data()process = lambda X, y: (tf.expand_dims(X, axis=3) / 255,tf.cast(y, dtype='int32'))resize_fn = lambda X, y: (tf.image.resize_with_pad(X, resize, resize) if resize else X, y)return (tf.data.Dataset.from_tensor_slices(process(*mnist_train)).batch(batch_size).shuffle(len(mnist_train[0])).map(resize_fn),tf.data.Dataset.from_tensor_slices(process(*mnist_test)).batch(batch_size).map(resize_fn)) 
train_iter, test_iter = load_data_fashion_mnist(batch_size)

初始化模型参数

首先用Sequential构建一个模型容器,然后添加一个Flatten层将28x28的输入展平,然后添加一个全连接层获得输出。

net = tf.keras.models.Sequential()
net.add(tf.keras.layers.Flatten(input_shape=(28, 28)))
weight_initializer = tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.01)
net.add(tf.keras.layers.Dense(10, kernel_initializer=weight_initializer))

模型训练

首先定义一个损失函数,这里使用稀疏类别交叉熵损失函数,适应标签是整数而不是独热编码的情况,然后定义训练模型,采用小批量随机梯度下降(SGD)算法进行训练。

loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
trainer = tf.keras.optimizers.SGD(learning_rate=.1)
num_epochs = 10

接下来定义模型的训练具体方式,对每一轮采用随机梯度下降的后向计算方式,进行具体的训练。其中train_epoch_ch3是在一轮中进行训练,train_ch3是整体的训练过程。

def train_epoch_ch3(net, train_iter, loss, updater):metric = Accumulator(3)for X, y in train_iter:with tf.GradientTape() as tape:y_hat = net(X)if isinstance(loss, tf.keras.losses.Loss):l = loss(y, y_hat)else:l = loss(y_hat, y)if isinstance(updater, tf.keras.optimizers.Optimizer):params = net.trainable_variablesgrads = tape.gradient(l, params)updater.apply_gradients(zip(grads, params))else:updater(X.shape[0], tape.gradient(l, updater.params))l_sum = l * float(tf.size(y)) if isinstance(loss, tf.keras.losses.Loss) else tf.reduce_sum(l)metric.add(l_sum, accuracy(y_hat, y), tf.size(y))return metric[0] / metric[2], metric[1] / metric[2]def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],legend=['train loss', 'train acc', 'test acc'])for epoch in range(num_epochs):train_metrics = train_epoch_ch3(net, train_iter, loss, updater)test_acc = evaluate_accuracy(net, test_iter)animator.add(epoch + 1, train_metrics + (test_acc,))train_loss, train_acc = train_metricsassert train_loss < 0.5, train_lossassert train_acc <= 1 and train_acc > 0.7, train_accassert test_acc <= 1 and test_acc > 0.7, test_acc

最后调用函数直接进行训练,需要注意的是,不必调用train_epoch_ch3函数,他在训练过程中是自动调用的。

train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

训练结果

在刚刚的训练过程中我们使用了animator和accumulator来可视化训练结果,因此训练结果较为直观,如图所示:

这篇关于TensorFlow实现Softmax回归的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1106186

相关文章

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

如何在Java Spring实现异步执行(详细篇)

《如何在JavaSpring实现异步执行(详细篇)》Spring框架通过@Async、Executor等实现异步执行,提升系统性能与响应速度,支持自定义线程池管理并发,本文给大家介绍如何在Sprin... 目录前言1. 使用 @Async 实现异步执行1.1 启用异步执行支持1.2 创建异步方法1.3 调用

Spring Boot配置和使用两个数据源的实现步骤

《SpringBoot配置和使用两个数据源的实现步骤》本文详解SpringBoot配置双数据源方法,包含配置文件设置、Bean创建、事务管理器配置及@Qualifier注解使用,强调主数据源标记、代... 目录Spring Boot配置和使用两个数据源技术背景实现步骤1. 配置数据源信息2. 创建数据源Be

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

linux批量替换文件内容的实现方式

《linux批量替换文件内容的实现方式》本文总结了Linux中批量替换文件内容的几种方法,包括使用sed替换文件夹内所有文件、单个文件内容及逐行字符串,强调使用反引号和绝对路径,并分享个人经验供参考... 目录一、linux批量替换文件内容 二、替换文件内所有匹配的字符串 三、替换每一行中全部str1为st

SpringBoot集成MyBatis实现SQL拦截器的实战指南

《SpringBoot集成MyBatis实现SQL拦截器的实战指南》这篇文章主要为大家详细介绍了SpringBoot集成MyBatis实现SQL拦截器的相关知识,文中的示例代码讲解详细,有需要的小伙伴... 目录一、为什么需要SQL拦截器?二、MyBATis拦截器基础2.1 核心接口:Interceptor

SpringBoot集成EasyPoi实现Excel模板导出成PDF文件

《SpringBoot集成EasyPoi实现Excel模板导出成PDF文件》在日常工作中,我们经常需要将数据导出成Excel表格或PDF文件,本文将介绍如何在SpringBoot项目中集成EasyPo... 目录前言摘要简介源代码解析应用场景案例优缺点分析类代码方法介绍测试用例小结前言在日常工作中,我们经

基于Python实现简易视频剪辑工具

《基于Python实现简易视频剪辑工具》这篇文章主要为大家详细介绍了如何用Python打造一个功能完备的简易视频剪辑工具,包括视频文件导入与格式转换,基础剪辑操作,音频处理等功能,感兴趣的小伙伴可以了... 目录一、技术选型与环境搭建二、核心功能模块实现1. 视频基础操作2. 音频处理3. 特效与转场三、高

Python实现中文文本处理与分析程序的示例详解

《Python实现中文文本处理与分析程序的示例详解》在当今信息爆炸的时代,文本数据的处理与分析成为了数据科学领域的重要课题,本文将使用Python开发一款基于Python的中文文本处理与分析程序,希望... 目录一、程序概述二、主要功能解析2.1 文件操作2.2 基础分析2.3 高级分析2.4 可视化2.5

Java实现预览与打印功能详解

《Java实现预览与打印功能详解》在Java中,打印功能主要依赖java.awt.print包,该包提供了与打印相关的一些关键类,比如PrinterJob和PageFormat,它们构成... 目录Java 打印系统概述打印预览与设置使用 PageFormat 和 PrinterJob 类设置页面格式与纸张