探索结直肠癌的免疫逃逸机制:单细胞分析揭示患者分层

本文主要是介绍探索结直肠癌的免疫逃逸机制:单细胞分析揭示患者分层,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
在这里插入图片描述

探索结直肠癌的免疫逃逸机制:单细胞分析揭示患者分层

在最新的科学研究中,结直肠癌(CRC)的复杂性和异质性一直是研究者们关注的重点。近期,一篇题为《Integrative single-cell analysis of human colorectal cancer reveals patient stratification with distinct immune evasion mechanisms》的研究论文,通过大规模的单细胞转录组分析,为CRC的肿瘤微环境(TME)异质性及其免疫逃逸机制提供了新的见解。

主要内容

本文通过整合来自约200名供体的人类结直肠癌(CRC)单细胞转录组数据,全面刻画了与正常组织相比的肿瘤微环境(TME)转录重塑情况,并鉴定出一类具有T细胞招募潜力的肿瘤特异性内皮细胞亚群。研究基于TME异质性对患者进行了分层,揭示了不同的TME亚型,其中癌细胞利用不同的免疫逃避机制。此外,研究还通过将单细胞转录谱与全基因组关联研究(GWAS)鉴定的风险基因相关联,确定了间质细胞是CRC遗传易感性的主要效应细胞类型。

行文逻辑

  1. 引言:介绍CRC肿瘤微环境(TME)对CRC进展、治疗反应和临床结局的重要影响,指出当前对CRC患者间TME异质性的研究不足。
  2. 方法:详细描述数据收集、质量控制、细胞类型鉴定、基因表达差异分析、细胞间相互作用推断等研究方法。
  3. 结果
    • 构建人类结直肠单细胞图谱,比较不同生理和病理条件下的细胞组成和转录变化。
    • 鉴定出一类具有T细胞招募潜力的肿瘤特异性内皮细胞亚群(HEV-CXCL10)。
    • 基于TME异质性将患者分为六个亚组,每个亚组具有不同的免疫逃逸机制。
    • 分析CRC遗传风险基因的表达变化,确定间质细胞为主要效应细胞类型。
  4. 讨论:探讨研究结果的临床意义,提出未来研究方向,包括功能实验验证和个性化免疫治疗的开发。

主要观点

  1. TME异质性:CRC患者的TME具有高度异质性,不同患者的TME中细胞组成和转录谱存在显著差异。
  2. 免疫逃逸机制:不同TME亚型中,癌细胞利用不同的免疫逃逸机制,如上调PD-L1/PD-1轴、CD47-SIRPA轴等。
  3. 间质细胞的作用:间质细胞(如成纤维细胞和内皮细胞)在CRC遗传易感性中起重要作用,其转录变化与CRC风险基因显著相关。

主要结论

  1. 患者分层:基于TME异质性将CRC患者分为六个亚组,为个性化免疫治疗提供了新的视角。
  2. 免疫逃逸机制:揭示了不同TME亚型中癌细胞利用的不同免疫逃逸机制,有助于设计更精准的免疫疗法。
  3. 间质细胞的重要性:强调了间质细胞在CRC发生发展中的作用,为CRC遗传机制提供了新的见解。

研究通过大规模的单细胞转录组分析,不仅增进了对CRC肿瘤微环境的理解,还为CRC的个性化治疗提供了科学依据。

当然可以,以下是根据您提供的信息整理的一篇关于《Integrative single-cell analysis of human colorectal cancer reveals patient stratification with distinct immune evasion mechanisms》的博客文章草稿,并在文末附上了获取代码的地址。

主要研究内容

数据整合与分析

研究团队整合了来自约200名供体的人类CRC单细胞转录组数据,构建了一个高质量的单细胞图谱,涵盖了健康组织、炎症组织、息肉、癌旁组织和肿瘤组织等多种样本类型。通过对这些数据的深入分析,研究人员不仅刻画了CRC肿瘤微环境的转录重塑情况,还鉴定出一类具有T细胞招募潜力的肿瘤特异性内皮细胞亚群(HEV-CXCL10)。

患者分层与免疫逃逸机制

基于TME的异质性,研究团队将CRC患者分为六个不同的亚组。每个亚组的患者在TME细胞组成上表现出独特的特征,并且癌细胞利用不同的免疫逃逸机制来逃避免疫系统的攻击。例如,某些亚组的癌细胞高度表达PD-L1/PD-1轴和CD47-SIRPA轴,这些机制有助于癌细胞躲避免疫细胞的识别和攻击。

遗传风险基因的表达变化

通过将单细胞转录谱与全基因组关联研究(GWAS)鉴定的CRC风险基因相关联,研究发现间质细胞(如成纤维细胞和内皮细胞)在CRC遗传易感性中扮演了重要角色。间质细胞的转录变化与CRC风险基因显著相关,这表明间质细胞不仅是肿瘤微环境的重要组成部分,还可能是CRC发病机制中的关键效应细胞。

研究意义与未来展望

这项研究不仅增进了我们对CRC肿瘤微环境复杂性的理解,还为CRC的个性化治疗提供了新的视角。通过识别具有不同免疫逃逸机制的患者亚组,研究者们能够设计出更加精准的免疫疗法,以针对特定患者的需求。

此外,研究还强调了间质细胞在CRC发病和进展中的重要作用。这为我们探索CRC的遗传机制和开发新的治疗靶点提供了重要线索。

结论

这篇论文通过大规模的单细胞转录组分析,揭示了CRC肿瘤微环境的异质性及其与免疫逃逸机制之间的关系。

Bhatt distance difference

文中涉及了Bhatt distance difference这个概念

在统计学中,Bhattacharyya距离(又称巴氏距离或巴塔恰里雅距离)用于度量两个概率分布的相似性。这个概念与Bhattacharyya系数密切相关,后者是衡量两个统计样本或总体之间重叠量的指标。这两项度量均以1930年代在印度统计研究所工作的统计学家Anil Kumar Bhattacharya的名字命名。

Bhattacharyya距离的概念

Bhattacharyya距离用于测量两个离散或连续概率分布的相似性。对于定义在同一域X上的两个概率分布p和q,它们的Bhattacharyya距离定义依赖于分布的具体类型(离散或连续)。

  • 对于离散概率分布,Bhattacharyya距离可以定义为特定形式的Bhattacharyya系数(BC)的某种函数,其中BC是0到1之间的值,表示两个分布的重叠程度。
  • 对于连续概率分布,Bhattacharyya系数和距离的定义则基于概率密度函数的积分。

作用

Bhattacharyya距离的主要作用是量化两个概率分布之间的差异或相似性。它在多个领域中有重要应用,包括但不限于:

  1. 模式识别:在模式识别中,Bhattacharyya距离可用于比较未知样本与已知类别的概率分布,从而进行分类决策。
  2. 图像处理:在图像处理领域,Bhattacharyya距离可用于图像分割、特征匹配等任务,通过比较图像区域的概率分布来实现。
  3. 生物信息学:在生物信息学中,它可用于分析基因表达数据,比较不同条件下基因表达分布的相似性。
  4. 统计分析:在更广泛的统计分析中,Bhattacharyya距离提供了一种量化两个数据集相似性的方法,有助于揭示数据之间的潜在联系和差异。

Bhattacharyya距离是一个在多个学科领域中有重要应用的统计工具,它通过量化两个概率分布之间的差异或相似性,为数据分析、模式识别、图像处理等任务提供了有力的支持。

Bhatt distance difference主要用于说明不同条件下主要细胞类型之间转录组的相似性差异。具体来说,这一度量标准被应用于评估肿瘤、癌旁组织和炎症组织之间主要细胞类型的转录相似性。

  1. 评估转录相似性:通过计算Bhattacharyya距离差异,研究能够量化不同组织或细胞类型之间转录组的相似程度。较小的Bhattacharyya距离差异表明两种细胞类型或组织之间的转录组更加相似,而较大的差异则意味着它们之间存在显著的转录差异。

  2. 区分细胞类型的组织偏好:研究利用Bhattacharyya距离差异来分析主要细胞类型在不同组织中的偏好分布。这有助于揭示哪些细胞类型在特定组织(如肿瘤、癌旁或炎症组织)中更为富集。

  3. 探索肿瘤微环境异质性:通过比较不同患者或不同条件下的Bhattacharyya距离差异,研究能够探索结直肠癌(CRC)肿瘤微环境(TME)的异质性。这有助于识别不同患者群体之间的转录组差异,并可能揭示与免疫逃逸机制相关的分子特征。

  4. 支持患者分层:研究中使用多种单细胞数据集和Bhattacharyya距离差异分析来对患者进行分层,基于TME的异质性将患者划分为具有不同免疫逃逸机制的不同亚型。这种分层方法有助于理解不同患者群体之间的生物学差异,并为个性化免疫治疗策略的开发提供见解。

Bhatt distance difference在该文献中主要被用作一种量化转录组相似性的工具,以支持对结直肠癌患者肿瘤微环境异质性的深入分析,并为患者分层和个性化治疗策略的开发提供科学依据。

获取代码和数据

如果对这项研究感兴趣,可以访问以下地址:https://github.com/Chuxj/CRC-atlas

在这里插入图片描述
在这里插入图片描述

基础的热图,insilico FACS都是可以学习的

但是这篇张泽明老师通讯的文章中,代码给的并不全,有些只给了一个function,一些空间转录的code并没有,但是其他一些可以学习一下

这篇关于探索结直肠癌的免疫逃逸机制:单细胞分析揭示患者分层的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1105899

相关文章

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Java中的xxl-job调度器线程池工作机制

《Java中的xxl-job调度器线程池工作机制》xxl-job通过快慢线程池分离短时与长时任务,动态降级超时任务至慢池,结合异步触发和资源隔离机制,提升高频调度的性能与稳定性,支撑高并发场景下的可靠... 目录⚙️ 一、调度器线程池的核心设计 二、线程池的工作流程 三、线程池配置参数与优化 四、总结:线程

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方