三种插入排序详解和代码实现(直接插入排序、折半插入排序和希尔排序)

2024-08-25 11:20

本文主要是介绍三种插入排序详解和代码实现(直接插入排序、折半插入排序和希尔排序),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 基本思想
  • 直接插入排序
    • 排序方法
    • 代码实现
    • 复杂度分析
  • 折半插入排序
    • 排序方法
    • 代码实现
    • 复杂度分析
  • 希尔排序
    • 排序方法
    • 代码实现
    • 复杂度分析
      • 最佳情况
      • 平均情况
      • 最坏情况
      • 增量序列的影响

基本思想

插入排序的基本思想是:每一趟将一个待排序的元素按照其关键字的大小插入到已经排好序的一组数据的适当位置,直到所有的待排序元素全部插入为止。
就像我们在打扑克时,每抓取一张牌,都将其插入到合适的位置,直到所有的牌摸完,我们就得到了一个有序的序列。

本文介绍三种插入排序的方法:直接插入排序折半插入排序希尔排序

直接插入排序

排序方法

  1. 将待排序的元素存放在数组中,数据元素的数量为 n n n
    1

  2. 每次选择一个元素将其放到前面的有序数组中,使得其仍然保持有序。共循环 n − 1 n-1 n1 次,第 k k k 次循环之后有序数组的长度为 k + 1 k+1 k+1
    2

代码实现

public class Test {public static void insertSort(int[] a) {for (int i = 1; i < a.length; i ++) {int key = a[i];int j = i - 1;// 数组元素后移直到key找到合适的位置while (j >= 0 && a[j] > key) {a[j + 1] = a[j];j --;}a[j + 1] = key;}}public static void main(String[] args) {int[] data = {5, 7, 4, 2, 0, 3, 1, 6};insertSort(data);for (int i : data) {System.out.print(i + " ");}}
}

复杂度分析

  1. 外层循环从 i = 1 i=1 i=1 开始,共执行了 n − 1 n-1 n1 次循环,内层循环中最坏情况下每次需要移动的次数为 O ( n ) O(n) O(n),因此时间复杂度为 O ( n 2 ) O(n^2) O(n2)
  2. 排序过程中只需要 O ( 1 ) O(1) O(1) 数量级的变量来记录状态,因此空间复杂度为 O ( 1 ) O(1) O(1)
  3. 直接插排由于在移动元素时可以是从后向前遍历移动,因此算法属于稳定排序。

折半插入排序

排序方法

  • 直接插入排序的基础上进行优化,在进行查找待插入元素位置操作的时候,我们可以利用二分法来实现(即折半查找)。

代码实现

public static void binaryInsertSort(int[] array) {for (int i = 1; i < array.length; i++) {int key = array[i];int left = 0;int right = i - 1;// 二分查找while (left <= right) {int mid = left + (right - left) / 2;if (key < array[mid]) {right = mid - 1;} else {left = mid + 1;}}int j = i - 1;while (j >= left) {array[j + 1] = array[j];j--;}array[left] = key;}
}

复杂度分析

  1. 折半插入排序的对象移动次数和直接插入排序相同,依赖于对象的初始排列方式。由于折半插入排序只是减少了元素之间的比较次数,并没有改变元素的移动次数。因此折半插入排序的时间复杂度仍为 O ( n 2 ) O(n^2) O(n2)
  2. 其空间复杂度也和直接插入排序相同,为 O ( 1 ) O(1) O(1)
  3. 折半插入排序也属于稳定排序,但是由于用到了二分查找,所以只能应用于顺序结构,不能用于链式结构。

希尔排序

排序方法

希尔排序实质上是采用分组插入的方法,将整个待排序的数组分为若干组,从而减少直接插入排序的数据量,对每个分组分别进行直接插入排序,然后增加每个分组的数据量重新进行排序。直至所有分组合并为一组。

  1. 确定一个增量 d 1 d_1 d1 ,并把间隔为 d 1 d_1 d1 的数据分入同一组中,在各组进行直接插入排序。
  2. 第二趟取增量 d 2 d_2 d2 ,重复上述分组和排序。
  3. 以此类推,直到所取的增量 d i = 1 d_i=1 di=1 d t < d t − 1 < . . . < d 2 < d 1 d_t<d_{t-1}<...<d_2<d_1 dt<dt1<...<d2<d1),所有数据在同一组中直接插入排序为止。

  1. 如图所示,第一趟取增量 d 1 = 4 d_1=4 d1=4,所有间隔为 4 4 4 的元素分为同一组,并进行直接排序。
    1

  2. 第二趟取增量 d 2 = 2 d_2=2 d2=2,所有间隔为 2 2 2 的元素分为同一组,并进行直接排序。
    2

  3. 第三趟取增量 d 3 = 1 d_3=1 d3=1,所有元素分为同一组,并进行直接排序,排序完成。
    3

代码实现

public static void shellSort(int[] array) {int n = array.length;// 每次间隔折半for (int gap = n / 2; gap > 0; gap /= 2) {// 同组元素直接插入排序for (int i = gap; i < n; i++) {int key = array[i];int j = i;while (j >= gap && array[j - gap] > key) {array[j] = array[j - gap];j -= gap;}array[j] = key;}}
}

复杂度分析

希尔排序的空间复杂度与上述两种排序相同,均为 O ( 1 ) O(1) O(1)
记录跳跃式的移动导致了希尔排序算法是不稳定的。

希尔排序的时间复杂度取决于所使用的增量序列(gap sequence)。以下是对希尔排序时间复杂度的详细分析

最佳情况

  • 时间复杂度 O ( n l o g n ) O(nlogn) O(nlogn)(在某些特定的增量序列下,如Hibbard增量序列)
  • 描述:当增量序列优化得当时,希尔排序的性能接近于 O ( n l o g n ) O(nlogn) O(nlogn)。这意味着希尔排序在最优情况下的性能与归并排序相近。

平均情况

  • 时间复杂度 O ( n 3 2 ) − O ( n 5 4 ) O(n^\frac{3}{2})-O(n^\frac{5}{4}) O(n23)O(n45)
  • 描述:对于大多数常用的增量序列(如Shell增量序列、Knuth增量序列等),希尔排序的平均时间复杂度通常介于 O ( n 3 2 ) O(n^\frac{3}{2}) O(n23) O ( n 5 4 ) O(n^\frac{5}{4}) O(n45) 之间。

最坏情况

  • 时间复杂度 O ( n 2 ) O(n^2) O(n2)(例如,使用简单的增量序列,如 n 2 , n 4 , . . . , 1 \frac{n}{2},\frac{n}{4},...,1 2n4n...1
  • 描述:在使用不优化的增量序列时,希尔排序的时间复杂度可能会退化到 O ( n 2 ) O(n^2) O(n2),类似于简单插入排序的时间复杂度。

增量序列的影响

  1. Shell增量序列:初始增量为 n 2 \frac{n}{2} 2n,然后逐步减小到 1 1 1。时间复杂度为 O ( n 2 ) O(n^2) O(n2)
  2. Hibbard增量序列:增量为 1 , 3 , 7 , 15 , . . . , 2 k − 1 1, 3, 7, 15, ..., 2^k-1 1,3,7,15,...,2k1。时间复杂度为 O ( n 3 2 ) O(n^\frac{3}{2}) O(n23)
  3. Knuth增量序列:增量为 1 , 4 , 13 , 40 , 121 , . . . , 3 k − 1 2 1, 4, 13, 40, 121, ..., \frac{3^{k-1}}{2} 1,4,13,40,121,...,23k1。时间复杂度为 O ( n 5 4 ) O(n^\frac{5}{4}) O(n45)
  4. Sedgewick增量序列:例如, 1 , 5 , 19 , 41 , 109 , . . . 1, 5, 19, 41, 109, ... 1,5,19,41,109,... 时间复杂度为 O ( n 4 3 ) O(n^\frac{4}{3}) O(n34)

这篇关于三种插入排序详解和代码实现(直接插入排序、折半插入排序和希尔排序)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1105416

相关文章

Go 语言中的 Struct Tag 的用法详解

《Go语言中的StructTag的用法详解》在Go语言中,结构体字段标签(StructTag)是一种用于给字段添加元信息(metadata)的机制,常用于序列化(如JSON、XML)、ORM映... 目录一、结构体标签的基本语法二、json:"token"的具体含义三、常见的标签格式变体四、使用示例五、使用

golang 对象池sync.Pool的实现

《golang对象池sync.Pool的实现》:本文主要介绍golang对象池sync.Pool的实现,用于缓存和复用临时对象,以减少内存分配和垃圾回收的压力,下面就来介绍一下,感兴趣的可以了解... 目录sync.Pool的用法原理sync.Pool 的使用示例sync.Pool 的使用场景注意sync.

Swagger2与Springdoc集成与使用详解

《Swagger2与Springdoc集成与使用详解》:本文主要介绍Swagger2与Springdoc集成与使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录1. 依赖配置2. 基础配置2.1 启用 Springdoc2.2 自定义 OpenAPI 信息3.

mysql中的group by高级用法详解

《mysql中的groupby高级用法详解》MySQL中的GROUPBY是数据聚合分析的核心功能,主要用于将结果集按指定列分组,并结合聚合函数进行统计计算,本文给大家介绍mysql中的groupby... 目录一、基本语法与核心功能二、基础用法示例1. 单列分组统计2. 多列组合分组3. 与WHERE结合使

IDEA实现回退提交的git代码(四种常见场景)

《IDEA实现回退提交的git代码(四种常见场景)》:本文主要介绍IDEA实现回退提交的git代码(四种常见场景),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.已提交commit,还未push到远端(Undo Commit)2.已提交commit并push到

Kotlin Compose Button 实现长按监听并实现动画效果(完整代码)

《KotlinComposeButton实现长按监听并实现动画效果(完整代码)》想要实现长按按钮开始录音,松开发送的功能,因此为了实现这些功能就需要自己写一个Button来解决问题,下面小编给大... 目录Button 实现原理1. Surface 的作用(关键)2. InteractionSource3.

java对接第三方接口的三种实现方式

《java对接第三方接口的三种实现方式》:本文主要介绍java对接第三方接口的三种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录HttpURLConnection调用方法CloseableHttpClient调用RestTemplate调用总结在日常工作

golang中slice扩容的具体实现

《golang中slice扩容的具体实现》Go语言中的切片扩容机制是Go运行时的一个关键部分,它确保切片在动态增加元素时能够高效地管理内存,本文主要介绍了golang中slice扩容的具体实现,感兴趣... 目录1. 切片扩容的触发append 函数的实现2. runtime.growslice 函数gro

golang实现动态路由的项目实践

《golang实现动态路由的项目实践》本文主要介绍了golang实现动态路由项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习... 目录一、动态路由1.结构体(数据库的定义)2.预加载preload3.添加关联的方法一、动态路由1

使用Python实现调用API获取图片存储到本地的方法

《使用Python实现调用API获取图片存储到本地的方法》开发一个自动化工具,用于从JSON数据源中提取图像ID,通过调用指定API获取未经压缩的原始图像文件,并确保下载结果与Postman等工具直接... 目录使用python实现调用API获取图片存储到本地1、项目概述2、核心功能3、环境准备4、代码实现