一文让你记住Pyspark下DataFrame的7种的Join 效果

2024-08-25 07:08

本文主要是介绍一文让你记住Pyspark下DataFrame的7种的Join 效果,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近看到了一片好文,虽然很简单,但是配上的插图可以让人很好的记住Pyspark 中的多种Join 类型和实际的效果。原英文链接 Introduction to Pyspark join types - Blog | luminousmen 。

假设使用如下的两个DataFrame 来进行展示

heroes_data = [('Deadpool', 3), ('Iron man', 1),('Groot', 7),
]
race_data = [('Kryptonian', 5), ('Mutant', 3), ('Human', 1), 
]
heroes = spark.createDataFrame(heroes_data, ['name', 'id'])
races = spark.createDataFrame(race_data, ['race', 'id'])

实际的上的数据展示效果如下:

+--------+---+           +----------+---+
|    name| id|           |      race| id|
+--------+---+           +----------+---+
|Deadpool|  3|           |Kryptonian|  5|
|Iron man|  1|           |    Mutant|  3|
|   Groot|  7|           |     Human|  1|
+--------+---+           +----------+---+

下面的展示图片中,其中相同的颜色表示的是能够Join匹配上的数据。下面的Join都是通过ID的方式来进行关联。

下面除了 Cross Join 之间,其它的都是通过如下说明

heroes.join(races, on='id', how='left').show()

说明在不同的 Join 的方式下不同效果。

Cross join 笛卡尔积

这个比较好理解,就是heroes表的数据和races表的数据进行Join,就是将heroes表的每一行数据都同races表的每一行数据进行联合。数据的数量级就是 m*n。不考虑Join的主键。

>>> heroes.crossJoin(races).show()
+--------+---+----------+---+  
|    name| id|      race| id|
+--------+---+----------+---+
|Deadpool|  3|Kryptonian|  5|
|Deadpool|  3|    Mutant|  3|
|Deadpool|  3|     Human|  1|
|Iron man|  1|Kryptonian|  5|
|Iron man|  1|    Mutant|  3|
|Iron man|  1|     Human|  1|
|   Groot|  7|Kryptonian|  5|
|   Groot|  7|    Mutant|  3|
|   Groot|  7|     Human|  1|
+--------+---+----------+---+

Inner join 内联合

只生成同时匹配表heroes和表races的记录集

Inner join

>>> heroes.join(races, on='id', how='inner').show()
+---+--------+------+ 
| id|    name|  race|
+---+--------+------+
|  1|Iron man| Human|
|  3|Deadpool|Mutant|
+---+--------+------+

Left join / Left outer join 左外联合

leftleft outer 是一个别名的关系。生成表heroes的所有记录,包括在表races里匹配的记录。如果没有匹配的,右边将是null。就是inner Join 的结果,再加上左边的表未匹配的所有的结果。

Left join

>>> heroes.join(races, on='id', how='left').show()
>>> heroes.join(races, on='id', how='leftouter').show()
+---+--------+------+
| id|    name|  race|
+---+--------+------+
|  7|   Groot|  null|
|  1|Iron man| Human|
|  3|Deadpool|Mutant|
+---+--------+------+

Right join / Right outer join 右外联合

同上左外联合类似。

Right join

>>> heroes.join(races, on='id', how='right').show()
>>> heroes.join(races, on='id, how='rightouter').show()
+---+--------+----------+ 
| id|    name|      race|
+---+--------+----------+
|  5|    null|Kryptonian|
|  1|Iron man|     Human|
|  3|Deadpool|    Mutant|
+---+--------+----------+

Full outer join 全外联合

outer和full 也是别名关系。生成表heroes和表races里的记录全集,包括两边都匹配的记录。如果有一边没有匹配的,缺失的这一边为null。

Full outer join

>>> heroes.join(races, on='id', how='outer').show()
>>> heroes.join(races, on='id', how='full').show()
+---+--------+----------+
| id|    name|      race|
+---+--------+----------+
|  7|   Groot|      null|
|  5|    null|Kryptonian|
|  1|Iron man|     Human|
|  3|Deadpool|    Mutant|
+---+--------+----------+

Left semi-join 左半连接

可以简单的看成是,inner join 之后,只保留能够Join上的左边表数据。

Left semi-join

>>> heroes.join(races, on='id', how='leftsemi').show()
+---+--------+
| id|    name|
+---+--------+
|  1|Iron man|
|  3|Deadpool|
+---+--------+

Left anti join

看成是Left semi-join 的取反操作,将左边中,没有匹配上的数据给取出。

Left anti join

>>> heroes.join(races, on='id', how='leftanti').show()
+---+-----+
| id| name|
+---+-----+
|  7|Groot|
+---+-----+

其它的补充

在Join的过程中,左边和右边都不能为None,可以是空数据的表但是需要带Schema,且Schema中有指定的关联主键(on)。

使用Pyspark 中创建空的DataFrame

  1. 创建空Schema的空DataFrame
  2. 创建带Schema的空DataFrame
def create_empty_df_without_schema():# Create an empty RDDemp_RDD = spark.sparkContext.emptyRDD()# Create empty schemacolumns = StructType([])return spark.createDataFrame(data=emp_RDD,schema=columns)def create_empty_df_with_schema():columns = StructType([StructField('name', StringType(), True),StructField('id', IntegerType(), True),])# emp_RDD = spark.sparkContext.emptyRDD()return spark.createDataFrame(data=[],schema=columns)

喜欢点个赞再走吧~

这篇关于一文让你记住Pyspark下DataFrame的7种的Join 效果的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1104888

相关文章

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

一文详解MySQL索引(六张图彻底搞懂)

《一文详解MySQL索引(六张图彻底搞懂)》MySQL索引的建立对于MySQL的高效运行是很重要的,索引可以大大提高MySQL的检索速度,:本文主要介绍MySQL索引的相关资料,文中通过代码介绍的... 目录一、什么是索引?为什么需要索引?二、索引该用哪种数据结构?1. 哈希表2. 跳表3. 二叉排序树4.

Python利用PySpark和Kafka实现流处理引擎构建指南

《Python利用PySpark和Kafka实现流处理引擎构建指南》本文将深入解剖基于Python的实时处理黄金组合:Kafka(分布式消息队列)与PySpark(分布式计算引擎)的化学反应,并构建一... 目录引言:数据洪流时代的生存法则第一章 Kafka:数据世界的中央神经系统消息引擎核心设计哲学高吞吐

一文带你迅速搞懂路由器/交换机/光猫三者概念区别

《一文带你迅速搞懂路由器/交换机/光猫三者概念区别》讨论网络设备时,常提及路由器、交换机及光猫等词汇,日常生活、工作中,这些设备至关重要,居家上网、企业内部沟通乃至互联网冲浪皆无法脱离其影响力,本文将... 当谈论网络设备时,我们常常会听到路由器、交换机和光猫这几个名词。它们是构建现代网络基础设施的关键组成

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

一文解密Python进行监控进程的黑科技

《一文解密Python进行监控进程的黑科技》在计算机系统管理和应用性能优化中,监控进程的CPU、内存和IO使用率是非常重要的任务,下面我们就来讲讲如何Python写一个简单使用的监控进程的工具吧... 目录准备工作监控CPU使用率监控内存使用率监控IO使用率小工具代码整合在计算机系统管理和应用性能优化中,监

一文详解如何使用Java获取PDF页面信息

《一文详解如何使用Java获取PDF页面信息》了解PDF页面属性是我们在处理文档、内容提取、打印设置或页面重组等任务时不可或缺的一环,下面我们就来看看如何使用Java语言获取这些信息吧... 目录引言一、安装和引入PDF处理库引入依赖二、获取 PDF 页数三、获取页面尺寸(宽高)四、获取页面旋转角度五、判断