数学基础 -- 均方误差(Mean Squared Error, MSE)与交叉熵(Cross-Entropy)的数学原理

本文主要是介绍数学基础 -- 均方误差(Mean Squared Error, MSE)与交叉熵(Cross-Entropy)的数学原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

均方误差(Mean Squared Error, MSE)与交叉熵(Cross-Entropy)的数学原理

1. 均方误差(Mean Squared Error, MSE)

均方误差主要用于回归问题,度量预测值与实际值之间的平均平方差。其数学公式为:

MSE = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 \text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 MSE=n1i=1n(yiy^i)2

  • n n n:样本数量。
  • y i y_i yi:实际值。
  • y ^ i \hat{y}_i y^i:预测值。

原理:

  1. 误差:首先计算每个样本的预测值与实际值之间的差,即 y i − y ^ i y_i - \hat{y}_i yiy^i
  2. 平方:将误差进行平方,这样可以避免正负误差相互抵消,也使得较大的误差权重更大。
  3. 平均:对所有样本的平方误差求平均值,以获得整体的误差。

均方误差的值越小,说明模型的预测结果越接近实际值。由于平方的原因,MSE 对异常值(outliers)较为敏感。

2. 交叉熵(Cross-Entropy)

交叉熵损失函数通常用于分类问题,度量两个概率分布之间的差异。其数学公式根据任务的不同,分为二分类交叉熵多分类交叉熵

二分类交叉熵损失

在二分类问题中,假设输出结果为类别 y ∈ { 0 , 1 } y \in \{0, 1\} y{0,1},预测值为 y ^ \hat{y} y^,则交叉熵损失的公式为:

Binary Cross-Entropy = − 1 n ∑ i = 1 n [ y i ⋅ log ⁡ ( y ^ i ) + ( 1 − y i ) ⋅ log ⁡ ( 1 − y ^ i ) ] \text{Binary Cross-Entropy} = -\frac{1}{n} \sum_{i=1}^{n} \left[ y_i \cdot \log(\hat{y}_i) + (1 - y_i) \cdot \log(1 - \hat{y}_i) \right] Binary Cross-Entropy=n1i=1n[yilog(y^i)+(1yi)log(1y^i)]

  • y i y_i yi:实际类别标签(0 或 1)。
  • y ^ i \hat{y}_i y^i:模型输出的预测概率。

多分类交叉熵损失

在多分类问题中,假设类别有 k k k 个,模型输出为一个概率分布 y ^ i = [ y ^ i 1 , y ^ i 2 , … , y ^ i k ] \hat{y}_i = [\hat{y}_{i1}, \hat{y}_{i2}, \dots, \hat{y}_{ik}] y^i=[y^i1,y^i2,,y^ik],则多分类交叉熵损失的公式为:

Categorical Cross-Entropy = − 1 n ∑ i = 1 n ∑ j = 1 k y i j ⋅ log ⁡ ( y ^ i j ) \text{Categorical Cross-Entropy} = -\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k} y_{ij} \cdot \log(\hat{y}_{ij}) Categorical Cross-Entropy=n1i=1nj=1kyijlog(y^ij)

  • y i j y_{ij} yij:实际类别的 one-hot 编码表示,即如果样本 i i i 属于类别 j j j,则 y i j = 1 y_{ij} = 1 yij=1,否则 y i j = 0 y_{ij} = 0 yij=0
  • y ^ i j \hat{y}_{ij} y^ij:模型输出的预测概率,表示样本 i i i 属于类别 j j j 的概率。

原理:

  1. 信息熵:交叉熵源于信息论中的“熵”概念,表示一个概率分布与目标分布之间的不确定性。熵越大,模型的预测结果越不确定。
  2. 对数函数:使用对数函数是为了惩罚模型对于实际类别的错误预测,对数值越接近0,损失越大。
  3. 求和:交叉熵通过对所有样本和类别求和,得出整体的损失值。

交叉熵损失函数在分类问题中非常常用,因为它直接与概率相关,能够准确反映模型对分类任务的表现。交叉熵越小,说明模型预测的概率分布与实际类别分布越接近。

这篇关于数学基础 -- 均方误差(Mean Squared Error, MSE)与交叉熵(Cross-Entropy)的数学原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1104527

相关文章

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

MySQL数据类型与表操作全指南( 从基础到高级实践)

《MySQL数据类型与表操作全指南(从基础到高级实践)》本文详解MySQL数据类型分类(数值、日期/时间、字符串)及表操作(创建、修改、维护),涵盖优化技巧如数据类型选择、备份、分区,强调规范设计与... 目录mysql数据类型详解数值类型日期时间类型字符串类型表操作全解析创建表修改表结构添加列修改列删除列

Python 函数详解:从基础语法到高级使用技巧

《Python函数详解:从基础语法到高级使用技巧》本文基于实例代码,全面讲解Python函数的定义、参数传递、变量作用域及类型标注等知识点,帮助初学者快速掌握函数的使用技巧,感兴趣的朋友跟随小编一起... 目录一、函数的基本概念与作用二、函数的定义与调用1. 无参函数2. 带参函数3. 带返回值的函数4.

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据