Pillow和OpenCV对图片进行高亮及裁剪处理

2024-08-24 22:44

本文主要是介绍Pillow和OpenCV对图片进行高亮及裁剪处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图片的高亮处理可以通过对图像的像素值进行调整来实现。常见的方法有改变亮度、对比度、应用滤镜等。以下是一些使用Pillow库和OpenCV库来进行图片高亮处理的示例代码。
使用Pillow调整亮度
Pillow库提供了一个非常方便的接口ImageEnhance中的Brightness类来调整图像的亮度。

from PIL import Image, ImageEnhance# 加载图片
image_path = "path_to_your_image.jpg"  # 替换为你的图片路径
image = Image.open(image_path)# 创建亮度增强器
enhancer = ImageEnhance.Brightness(image)# 调整亮度,1表示原始亮度,小于1变暗,大于1变亮
factor = 1.5  # 将亮度增加50%
brighter_image = enhancer.enhance(factor)# 显示结果
brighter_image.show()# 可选:保存调整后的图片
brighter_image.save("brighter_image.jpg")

使用OpenCV调整亮度
用OpenCV进行高亮处理,可以通过改变图片的像素值来实现。以下示例代码展示了如何将所有像素值提高,从而使图像变亮。

import cv2
import numpy as np# 读取图片
image_path = "path_to_your_image.jpg"  # 替换为你的图片路径
image = cv2.imread(image_path)# 增加亮度
# 注意:OpenCV中图片的数据类型为numpy数组,直接相加可能会导致数据溢出
# 使用clip函数确保结果仍然位于有效范围[0, 255]
brighter_image = np.clip(image + 50, 0, 255).astype(np.uint8)# 显示结果
cv2.imshow("Brighter Image", brighter_image)
cv2.waitKey(0)  # 等待按键
cv2.destroyAllWindows()# 可选:保存调整后的图片
cv2.imwrite("brighter_image_cv2.jpg", brighter_image)

注意事项
当使用Pillow调整亮度时,enhance方法的参数factor工作在一个相对亮度的级别上,它不是直接加到像素上的值,而是一个相乘的因子。
在使用OpenCV调整亮度时,直接对像素值进行加法操作可能会导致数值溢出,使用np.clip可以确保结果在有效的范围内。
除了简单的亮度调整,Pillow和OpenCV还提供了一系列处理图像对比度、色调、饱和度等方面的工具和函数,可以通过结合使用这些工具来实现更复杂的图像增强效果。

np.clip 函数是NumPy库中的一个重要函数,用于将数组中的元素限制在一个给定的区间内。对于区间之外的元素,如果某个元素小于区间的下限,它会被设置为区间的下限值;如果某个元素大于区间的上限,它会被设置为区间的上限值。对于在这个区间内的元素,保持不变。

基本语法
np.clip(a, a_min, a_max, out=None)
a : array_like —— 输入的数组。
a_min : scalar or array_like —— 剪切区间的下限。小于此值的元素将被设为a_min,可以是标量(单个数值)或数组形式(适用于广播操作)。
a_max : scalar or array_like —— 剪切区间的上限。大于此值的元素将被设为a_max,同样可以是标量或数组形式。
out : ndarray, optional —— 用于存储输出结果的数组。如果提供,其形状必须与输入数组a相匹配。

import numpy as np
# 创建一个数组
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
# 使用np.clip函数把所有元素限制在区间[3, 7]内
clipped_arr = np.clip(arr, 3, 7)
print(clipped_arr)
# 结果
[3 3 3 4 5 6 7 7 7]

其他用途
np.clip函数在图像处理中常用来调整像素值的范围。例如,在将图像的亮度提高后,一些像素值可能超出了有效的色彩范围[0, 255]。此时,可以使用np.clip来将这些值限制在有效范围内,避免数据溢出。
在机器学习和深度学习中,np.clip也常用于梯度裁剪(gradient clipping),以防止梯度爆炸问题。
注意事项
在使用np.clip时,提供的下限a_min不应大于上限a_max,否则可能不会得到预期的结果。当处理具有特定范围要求的数据时,合理设置这两个参数至关重要。

在Python中,裁剪图片可以通过多种库来实现,例如最常用的Pillow和OpenCV。下面分别介绍如何使用这两个库来裁剪图片。
使用Pillow裁剪图片
Pillow是一个Python图像处理库,提供了许多图像处理的功能,包括裁剪。以下是使用Pillow裁剪图片的示例:

from PIL import Image# 打开图片
image_path = 'path_to_your_image.jpg'  # 替换成你的图片路径
img = Image.open(image_path)# 定义裁剪区域 (左, 上, 右, 下)
crop_area = (100, 100, 300, 300)  # 根据需要调整这些值
# 裁剪图片
cropped_img = img.crop(crop_area)
# 显示裁剪后的图片
cropped_img.show()
# 保存裁剪后的图片
cropped_img.save('cropped_image.jpg')

使用OpenCV裁剪图片
OpenCV是另一个流行的图像处理库,常用于计算机视觉项目。以下是使用OpenCV裁剪图片的示例:

import cv2# 读取图片
image_path = 'path_to_your_image.jpg'  # 替换成你的图片路径
img = cv2.imread(image_path)# 定义裁剪区域 (y的开始和结束,x的开始和结束)
crop_area = (100, 300, 100, 300)  # 根据需要调整这些值# 裁剪图片
# 注意OpenCV中的图像格式是先行后列(即先高度(y)后宽度(x))
cropped_img = img[crop_area[0]:crop_area[1], crop_area[2]:crop_area[3]]# 显示裁剪后的图片
cv2.imshow('Cropped Image', cropped_img)
cv2.waitKey(0)  # 等待按键
cv2.destroyAllWindows()
# 保存裁剪后的图片
cv2.imwrite('cropped_image.jpg', cropped_img)

在这两种方法中,裁剪区域的选择至关重要。Pillow和OpenCV在指定裁剪区域时略有不同:

在Pillow中,裁剪区域是通过(left, upper, right, lower)来指定的,其中坐标原点在图片的左上角。
在OpenCV中,裁剪区域是通过行和列的索引来指定的,使用[y_start:y_end, x_start:x_end]的方式,其中坐标原点同样在图片的左上角,但需要注意的是,OpenCV使用的是(y, x)的顺序而非(x, y)。

这篇关于Pillow和OpenCV对图片进行高亮及裁剪处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1103820

相关文章

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

5 种使用Python自动化处理PDF的实用方法介绍

《5种使用Python自动化处理PDF的实用方法介绍》自动化处理PDF文件已成为减少重复工作、提升工作效率的重要手段,本文将介绍五种实用方法,从内置工具到专业库,帮助你在Python中实现PDF任务... 目录使用内置库(os、subprocess)调用外部工具使用 PyPDF2 进行基本 PDF 操作使用

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

Python异常处理之避免try-except滥用的3个核心原则

《Python异常处理之避免try-except滥用的3个核心原则》在Python开发中,异常处理是保证程序健壮性的关键机制,本文结合真实案例与Python核心机制,提炼出避免异常滥用的三大原则,有需... 目录一、精准打击:只捕获可预见的异常类型1.1 通用异常捕获的陷阱1.2 精准捕获的实践方案1.3

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二

Python进行word模板内容替换的实现示例

《Python进行word模板内容替换的实现示例》本文介绍了使用Python自动化处理Word模板文档的常用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录技术背景与需求场景核心工具库介绍1.获取你的word模板内容2.正常文本内容的替换3.表格内容的

Git进行版本控制的实战指南

《Git进行版本控制的实战指南》Git是一种分布式版本控制系统,广泛应用于软件开发中,它可以记录和管理项目的历史修改,并支持多人协作开发,通过Git,开发者可以轻松地跟踪代码变更、合并分支、回退版本等... 目录一、Git核心概念解析二、环境搭建与配置1. 安装Git(Windows示例)2. 基础配置(必