Pillow和OpenCV对图片进行高亮及裁剪处理

2024-08-24 22:44

本文主要是介绍Pillow和OpenCV对图片进行高亮及裁剪处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图片的高亮处理可以通过对图像的像素值进行调整来实现。常见的方法有改变亮度、对比度、应用滤镜等。以下是一些使用Pillow库和OpenCV库来进行图片高亮处理的示例代码。
使用Pillow调整亮度
Pillow库提供了一个非常方便的接口ImageEnhance中的Brightness类来调整图像的亮度。

from PIL import Image, ImageEnhance# 加载图片
image_path = "path_to_your_image.jpg"  # 替换为你的图片路径
image = Image.open(image_path)# 创建亮度增强器
enhancer = ImageEnhance.Brightness(image)# 调整亮度,1表示原始亮度,小于1变暗,大于1变亮
factor = 1.5  # 将亮度增加50%
brighter_image = enhancer.enhance(factor)# 显示结果
brighter_image.show()# 可选:保存调整后的图片
brighter_image.save("brighter_image.jpg")

使用OpenCV调整亮度
用OpenCV进行高亮处理,可以通过改变图片的像素值来实现。以下示例代码展示了如何将所有像素值提高,从而使图像变亮。

import cv2
import numpy as np# 读取图片
image_path = "path_to_your_image.jpg"  # 替换为你的图片路径
image = cv2.imread(image_path)# 增加亮度
# 注意:OpenCV中图片的数据类型为numpy数组,直接相加可能会导致数据溢出
# 使用clip函数确保结果仍然位于有效范围[0, 255]
brighter_image = np.clip(image + 50, 0, 255).astype(np.uint8)# 显示结果
cv2.imshow("Brighter Image", brighter_image)
cv2.waitKey(0)  # 等待按键
cv2.destroyAllWindows()# 可选:保存调整后的图片
cv2.imwrite("brighter_image_cv2.jpg", brighter_image)

注意事项
当使用Pillow调整亮度时,enhance方法的参数factor工作在一个相对亮度的级别上,它不是直接加到像素上的值,而是一个相乘的因子。
在使用OpenCV调整亮度时,直接对像素值进行加法操作可能会导致数值溢出,使用np.clip可以确保结果在有效的范围内。
除了简单的亮度调整,Pillow和OpenCV还提供了一系列处理图像对比度、色调、饱和度等方面的工具和函数,可以通过结合使用这些工具来实现更复杂的图像增强效果。

np.clip 函数是NumPy库中的一个重要函数,用于将数组中的元素限制在一个给定的区间内。对于区间之外的元素,如果某个元素小于区间的下限,它会被设置为区间的下限值;如果某个元素大于区间的上限,它会被设置为区间的上限值。对于在这个区间内的元素,保持不变。

基本语法
np.clip(a, a_min, a_max, out=None)
a : array_like —— 输入的数组。
a_min : scalar or array_like —— 剪切区间的下限。小于此值的元素将被设为a_min,可以是标量(单个数值)或数组形式(适用于广播操作)。
a_max : scalar or array_like —— 剪切区间的上限。大于此值的元素将被设为a_max,同样可以是标量或数组形式。
out : ndarray, optional —— 用于存储输出结果的数组。如果提供,其形状必须与输入数组a相匹配。

import numpy as np
# 创建一个数组
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
# 使用np.clip函数把所有元素限制在区间[3, 7]内
clipped_arr = np.clip(arr, 3, 7)
print(clipped_arr)
# 结果
[3 3 3 4 5 6 7 7 7]

其他用途
np.clip函数在图像处理中常用来调整像素值的范围。例如,在将图像的亮度提高后,一些像素值可能超出了有效的色彩范围[0, 255]。此时,可以使用np.clip来将这些值限制在有效范围内,避免数据溢出。
在机器学习和深度学习中,np.clip也常用于梯度裁剪(gradient clipping),以防止梯度爆炸问题。
注意事项
在使用np.clip时,提供的下限a_min不应大于上限a_max,否则可能不会得到预期的结果。当处理具有特定范围要求的数据时,合理设置这两个参数至关重要。

在Python中,裁剪图片可以通过多种库来实现,例如最常用的Pillow和OpenCV。下面分别介绍如何使用这两个库来裁剪图片。
使用Pillow裁剪图片
Pillow是一个Python图像处理库,提供了许多图像处理的功能,包括裁剪。以下是使用Pillow裁剪图片的示例:

from PIL import Image# 打开图片
image_path = 'path_to_your_image.jpg'  # 替换成你的图片路径
img = Image.open(image_path)# 定义裁剪区域 (左, 上, 右, 下)
crop_area = (100, 100, 300, 300)  # 根据需要调整这些值
# 裁剪图片
cropped_img = img.crop(crop_area)
# 显示裁剪后的图片
cropped_img.show()
# 保存裁剪后的图片
cropped_img.save('cropped_image.jpg')

使用OpenCV裁剪图片
OpenCV是另一个流行的图像处理库,常用于计算机视觉项目。以下是使用OpenCV裁剪图片的示例:

import cv2# 读取图片
image_path = 'path_to_your_image.jpg'  # 替换成你的图片路径
img = cv2.imread(image_path)# 定义裁剪区域 (y的开始和结束,x的开始和结束)
crop_area = (100, 300, 100, 300)  # 根据需要调整这些值# 裁剪图片
# 注意OpenCV中的图像格式是先行后列(即先高度(y)后宽度(x))
cropped_img = img[crop_area[0]:crop_area[1], crop_area[2]:crop_area[3]]# 显示裁剪后的图片
cv2.imshow('Cropped Image', cropped_img)
cv2.waitKey(0)  # 等待按键
cv2.destroyAllWindows()
# 保存裁剪后的图片
cv2.imwrite('cropped_image.jpg', cropped_img)

在这两种方法中,裁剪区域的选择至关重要。Pillow和OpenCV在指定裁剪区域时略有不同:

在Pillow中,裁剪区域是通过(left, upper, right, lower)来指定的,其中坐标原点在图片的左上角。
在OpenCV中,裁剪区域是通过行和列的索引来指定的,使用[y_start:y_end, x_start:x_end]的方式,其中坐标原点同样在图片的左上角,但需要注意的是,OpenCV使用的是(y, x)的顺序而非(x, y)。

这篇关于Pillow和OpenCV对图片进行高亮及裁剪处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1103820

相关文章

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Nginx中配置使用非默认80端口进行服务的完整指南

《Nginx中配置使用非默认80端口进行服务的完整指南》在实际生产环境中,我们经常需要将Nginx配置在其他端口上运行,本文将详细介绍如何在Nginx中配置使用非默认端口进行服务,希望对大家有所帮助... 目录一、为什么需要使用非默认端口二、配置Nginx使用非默认端口的基本方法2.1 修改listen指令

Java利用@SneakyThrows注解提升异常处理效率详解

《Java利用@SneakyThrows注解提升异常处理效率详解》这篇文章将深度剖析@SneakyThrows的原理,用法,适用场景以及隐藏的陷阱,看看它如何让Java异常处理效率飙升50%,感兴趣的... 目录前言一、检查型异常的“诅咒”:为什么Java开发者讨厌它1.1 检查型异常的痛点1.2 为什么说

使用Python实现无损放大图片功能

《使用Python实现无损放大图片功能》本文介绍了如何使用Python的Pillow库进行无损图片放大,区分了JPEG和PNG格式在放大过程中的特点,并给出了示例代码,JPEG格式可能受压缩影响,需先... 目录一、什么是无损放大?二、实现方法步骤1:读取图片步骤2:无损放大图片步骤3:保存图片三、示php