将Transformer应用于图像时,如何理解其中的QKV(形象化说明)+自注意力机制的理解

本文主要是介绍将Transformer应用于图像时,如何理解其中的QKV(形象化说明)+自注意力机制的理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在Transformer中,Q(Query)、K(Key)、V(Value)可以用以下方式形象化理解:

一、概念解释

1. Query(查询):可以想象成一个“问题”或者“搜索请求”。它代表着当前要关注的信息点,比如在处理图像时,某个图像块想要了解自己与其他图像块的关系,这个图像块对应的向量就充当了Query的角色。

2. Key(键):类似于一个“标签”或者“索引”。它为其他部分提供一种标识,以便与Query进行匹配。在图像中,每个图像块的Key向量可以被看作是这个图像块的一种特征标识,用于与其他图像块进行关联。

3. Value(值):是实际的“信息内容”。它包含着具体的数据或特征。在图像中,Value向量代表着图像块所携带的具体特征信息,通过与Query和Key的交互,决定哪些Value的信息应该被更多地关注和融合。

二、形象化示例  假设我们有一本包含很多动物图片的画册,我们想要找到特定的动物图片。

1. Query:现在我们心中有一个特定的动物形象,比如一只黄色的小猫咪,这个心中的形象就是Query。它代表着我们正在寻找的目标特征。

2. Key:每一页画册上的动物图片都有一些关键词描述,比如“黑色大狗”“白色兔子”“黄色猫咪”等。这些关键词就像是Key,帮助我们快速判断这一页是否可能是我们要找的内容。

3. Value:而每一页上的具体动物图片就是Value。当我们通过Query(心中的黄色小猫咪形象)与Key(画册上的关键词)进行匹配后,找到了对应的页面,这个页面上的动物图片(Value)就是我们最终得到的具体信息内容。

在Transformer处理图像的过程中,通过计算Query与各个Key的相似度,来确定对不同Value的关注程度,从而实现对图像特征的有效提取和融合。

在自注意力机制中,我们可以继续用查找黄色小猫的例子来理解。

假设我们有一本非常大的画册,里面有很多不同的动物图片,现在我们要找到黄色小猫这个特定的目标。

Query(查询)

黄色小猫的形象就是我们的 Query。它代表着我们要寻找的特定信息,就像在自注意力机制中,某个特定的元素(比如一个词或一个图像块)想要了解自己与其他元素的关系,这个元素就会产生一个 Query 向量来发起查询。

Key(键)

画册中每一页动物图片的关键词描述就是 Key。每一个 Key 都为画册中的一页提供了一种标识,让我们可以判断这一页与我们要找的黄色小猫的相关性。在自注意力机制中,每个元素也会产生一个 Key 向量,这个向量可以与其他元素的 Query 向量进行交互,以确定彼此的相关性。

Value(值)

画册中的每一页具体的动物图片就是 Value。当我们通过 Query 与 Key 的匹配找到可能相关的页面后,这些页面上的动物图片(Value)就提供了具体的信息内容。在自注意力机制中,Value 向量包含了每个元素的实际信息,通过与 Query 和 Key 的交互,决定哪些 Value 的信息应该被更多地关注和融合。

在自注意力机制的计算过程中,就像我们在画册中查找黄色小猫一样:

        首先,对于每一个元素(相当于画册中的每一页),它的 Query 向量会与所有其他元素的 Key 向量进行点积运算,这个点积的结果反映了两个元素之间的相关性。然后,通过对这些点积结果进行归一化处理(比如使用 softmax 函数),得到每个元素对其他元素的注意力权重。这些注意力权重就决定了在融合信息时,每个 Value 向量应该被赋予多少的重要性。

        最后,将所有的 Value 向量根据对应的注意力权重进行加权求和,得到经过自注意力机制处理后的新的表示。这个新的表示融合了与当前元素最相关的其他元素的信息,就像我们在画册中找到了与黄色小猫最相关的那些页面,并综合这些页面上的信息来更好地理解黄色小猫的特征。

简单来说,自注意力机制是本身自己的各个元素发出对于自身的query,从而得到每一个元素本身对于全局的重要性。

这篇关于将Transformer应用于图像时,如何理解其中的QKV(形象化说明)+自注意力机制的理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1103535

相关文章

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

Before和BeforeClass的区别及说明

《Before和BeforeClass的区别及说明》:本文主要介绍Before和BeforeClass的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Before和BeforeClass的区别一个简单的例子当运行这个测试类时总结Before和Befor

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

Go语言中Recover机制的使用

《Go语言中Recover机制的使用》Go语言的recover机制通过defer函数捕获panic,实现异常恢复与程序稳定性,具有一定的参考价值,感兴趣的可以了解一下... 目录引言Recover 的基本概念基本代码示例简单的 Recover 示例嵌套函数中的 Recover项目场景中的应用Web 服务器中

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

Spring中管理bean对象的方式(专业级说明)

《Spring中管理bean对象的方式(专业级说明)》在Spring框架中,Bean的管理是核心功能,主要通过IoC(控制反转)容器实现,下面给大家介绍Spring中管理bean对象的方式,感兴趣的朋... 目录1.Bean的声明与注册1.1 基于XML配置1.2 基于注解(主流方式)1.3 基于Java