英伟达H20核心价值和高效运用揭秘

2024-08-24 19:52

本文主要是介绍英伟达H20核心价值和高效运用揭秘,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

19a5cf6a1c4c1c71fa58ca1ac8d56d13.jpeg

 

揭秘英伟达H20:核心价值和高效运用的双重解读

   

2023年,ChatGPT的问世引爆了AIGC领域。在这场"百模大战"中,国内外头部企业纷纷以训练为主。随着模型训练逐渐成熟,大规模应用阶段到来,推理成为了大模型落地的主旋律。

bb755beb3130f1f007ee0f1aef04a330.jpeg

作为新一代明星机型,NVIDIA HGX H20备受瞩目。尽管其FP16、INT8等主要参数相较前辈有所降低,但仍具有显著优势。

2、支持NVLink 900GB/s高速互联,兼容8路HGX,助力构建AI集群,大幅提升大模型训练效果;在推理测试中表现卓越,超越前代。

f47eb171351e64c7369054ec6f855427.jpeg

H20 for 大模型训练

H20凭借卓越的卡间互联带宽和PCIe Gen5支持,搭配400GbE集群网络,实现线性加速比近1,为大规模集群搭建提供了理想之选。

根据当前测试结果,H20在执行大型模型训练任务时,采用BF16混合精度训练。在集群规模较小(如512 x H20)的情况下,H20的训练吞吐量可达到A8XX训练吞吐量的62%,即在集群规模较小时,H20性能约为A8XX性能的60%。而在集群规模较大(如4096 x H20)的情况下,H20的训练吞吐量可达到A8XX训练吞吐量的70%,即在集群规模较大时,H20性能约是A8XX性能的70%。

Huawei 910B-A2(over A8XX)

Nvidia H20(over A8XX)

Nvidia A8XX

较小集群规模(~512卡)

75% ~ 85%

60% ~ 70%

100%

较大集群规模(~4096卡)

60% ~ 70%

65% ~ 75%

90%(线性加速比)

FP8计算

不支持

大于100%

100%

值得注意的是,FP8混合精度训练尚处于发展阶段,目前仅适用于规模较小的LLM模型(如34B及以下)。然而,随着技术的持续创新,FP8混合精度训练有望在未来成为主流技术。

H20 for 大模型推理

H20以其卓越的显存配置和出色的FP8峰值算力,成为LLM推理任务的理想之选。相较于A8XX,H20在大模型推理任务中(特别是LLM推理),性能提升高达20%(例如,对比显存带宽:4/3.35 ≈ 1.19 = 120%)。

"随着LLM模型参数规模的急速扩大,具备大容量显存的AI芯片在推理任务中的优势将更加突出。这意味着,H20用于执行大型LLM模型的推断,不仅更高效,而且更具性价比。"

Huawei 910B-A2(over A8XX)

Nvidia H20(over A8XX)

Nvidia A8XX

推理实例(单机8卡)

75% ~ 85%

100% ~ 120%

100%

推理实例(32卡)

70% ~ 80%

100% ~ 125%

100%

结语

综上所述, H20的核心价值体现在:

1、安全合规,官方保修;

2、高效组建大规模集群用于大模型训练,如FP8混合精度训练;

3、超大规模LLM推理表现超越前辈,擅长FP8计算;

4、价格适中,性价比极高

您好,H20是一种高性能硬件,可以用于大模型训练任务。如果您的推理服务中的前辈机性能不足,可以考虑购置H20来代替前辈机进行大模型训练任务。这样可以提高推理性能,同时成本也会下降。

75ad44eb4d09025e0f41f002c5556f65.jpeg

777b2905ce204a6fe21a10a87bf6cf33.jpeg

8cbe0f0d2a0228761816ed85d93c9966.jpeg

 

-对此,您有什么看法见解?-

-欢迎在评论区留言探讨和分享。-

这篇关于英伟达H20核心价值和高效运用揭秘的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1103441

相关文章

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Python进阶之列表推导式的10个核心技巧

《Python进阶之列表推导式的10个核心技巧》在Python编程中,列表推导式(ListComprehension)是提升代码效率的瑞士军刀,本文将通过真实场景案例,揭示列表推导式的进阶用法,希望对... 目录一、基础语法重构:理解推导式的底层逻辑二、嵌套循环:破解多维数据处理难题三、条件表达式:实现分支

C#高效实现Word文档内容查找与替换的6种方法

《C#高效实现Word文档内容查找与替换的6种方法》在日常文档处理工作中,尤其是面对大型Word文档时,手动查找、替换文本往往既耗时又容易出错,本文整理了C#查找与替换Word内容的6种方法,大家可以... 目录环境准备方法一:查找文本并替换为新文本方法二:使用正则表达式查找并替换文本方法三:将文本替换为图

Python如何实现高效的文件/目录比较

《Python如何实现高效的文件/目录比较》在系统维护、数据同步或版本控制场景中,我们经常需要比较两个目录的差异,本文将分享一下如何用Python实现高效的文件/目录比较,并灵活处理排除规则,希望对大... 目录案例一:基础目录比较与排除实现案例二:高性能大文件比较案例三:跨平台路径处理案例四:可视化差异报

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Java高效实现Word转PDF的完整指南

《Java高效实现Word转PDF的完整指南》这篇文章主要为大家详细介绍了如何用Spire.DocforJava库实现Word到PDF文档的快速转换,并解析其转换选项的灵活配置技巧,希望对大家有所帮助... 目录方法一:三步实现核心功能方法二:高级选项配置性能优化建议方法补充ASPose 实现方案Libre

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security