基于机器学习的糖尿病数据分析与风险评估系统

2024-08-24 18:20

本文主要是介绍基于机器学习的糖尿病数据分析与风险评估系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

B站视频及代码下载:基于机器学习的糖尿病数据分析与风险评估系统_哔哩哔哩_bilibili

1. 项目简介

        糖尿病,作为一种在全球范围内广泛流行的慢性疾病,已经影响了数以百万计的人们的生活,给全球公共健康带来了严重的挑战。因此,糖尿病的预防和控制成为了全球公共卫生领域的一项重要任务。准确预测糖尿病的发病风险对于早期干预和预防至关重要。

        本项目通过可视化分析对数据进行初步探索,再通过斯皮尔曼相关性检验探究患糖尿病的影响因素,通过建立Xgboost模型对是否患有糖尿病就行建模和训练,在不知道临床测量结果的前提下,去预测某人是否会患有糖尿病,测试集预测 AUC 达到 94.2%。通过机器学习模型分析影响糖尿病的主要因素,可以帮助医疗从业者更好地了解病因和风险因素,从而制定有效的预防和治疗策略。

基于机器学习的糖尿病数据分析与风险评估系统

2. 糖尿病数据探索式可视化分析

2.1 数据集读取与预处理

        数据集包含了患者的各项健康指标及其是否患有糖尿病的标签。数据集的主要目标是通过机器学习模型预测糖尿病的发病风险,并分析影响糖尿病的主要健康因素。该数据集包含1879名患者的全面健康数据,唯一标识的ID范围为6000至7878。这些数据包括人口统计细节、生活方式因素、病史、临床测量、药物使用、症状、生活质量评分、环境暴露和健康行为。每位患者都有一名负责的保密医生,确保隐私和保密性。该数据集非常适合研究人员和数据科学家探索与糖尿病相关的因素、开发预测模型和进行统计分析。

data = pd.read_csv('diabetes_data.csv')
data.shape# 删除患者ID列和主管医生列
data.drop(['PatientID','DoctorInCharge'],axis=1,inplace=True)# 查看数据信息
data.info()# 查看重复值
data.duplicated().sum()

 2.2 患者基本信息统计分布

  • 年龄:共有1879条记录,年龄从20岁到90岁不等,平均年龄约为55.04岁。
  • 性别:共有2个不同的性别分类,其中男性(0)和女性(1)均有记录,男性占52.51%,女性占47.49%。
  • 种族:共有4个不同的种族分类,其中最常见的种族是白种人(0),有1175人。
  • 社会经济地位:共有3个不同的社会经济地位分类,社会经济地位中等(1)最常见,有751人。
  • 教育水平分布:共有4个不同的教育水平分类,学士学位(2)最常见,有1116人。
  • BMI:体质指数范围从15.03到39.99,平均值约为27.69。

2.3 吸烟饮酒等生活习惯统计分布 

  • 吸烟:共有2个分类,吸烟者(1)和非吸烟者(0),非吸烟者占71.85%。
  • 饮酒量:饮酒量从0.000928到19.996231不等,平均饮酒量约为10.10。
  • 每周体育活动时间:每周体育活动时间从0.004089小时到9.993893小时不等,平均每周体育活动时间为5.20小时。
  • 饮食质量:饮食质量评分从0.000885到9.998677,平均值约为4.90。
  • 睡眠质量:数据缺乏具体描述,但睡眠质量评分预计为正态分布。
  • 生活质量:生活质量评分从0.00239到99.7885,平均值约为48.51。    
# Compute the correlation matrix
corr = data.corr()# Generate a mask for the upper triangle
mask = np.triu(np.ones_like(corr, dtype=bool))# Set up the matplotlib figure
f, ax = plt.subplots(figsize=(11, 9))# Generate a custom diverging colormap
cmap = sns.diverging_palette(230, 20, as_cmap=True)# Draw the heatmap with the mask and correct aspect ratio
sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0,square=True, linewidths=.5, cbar_kws={"shrink": .5})plt.show()

        类似维度的统计分析,还包括其他疾病患病情况、临床检查结果、药物使用情况、症状情况、生活及工作环境、健康状况等维度,此处篇幅限制暂省略,具体可参考演示视频和源代码。

3. 糖尿病发病风险的影响因素分析

        通过计算特征与预测目标之间的斯皮尔曼相关性,并绘制相关性热力分布图。

# Compute the correlation matrix
corr = data.corr()# Generate a mask for the upper triangle
mask = np.triu(np.ones_like(corr, dtype=bool))# Set up the matplotlib figure
f, ax = plt.subplots(figsize=(11, 9))# Generate a custom diverging colormap
cmap = sns.diverging_palette(230, 20, as_cmap=True)# Draw the heatmap with the mask and correct aspect ratio
sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0,square=True, linewidths=.5, cbar_kws={"shrink": .5})plt.show()

        个人统计信息与患糖尿病之间的相关性分析:

        类似维度的统计分析,还包括其他疾病患病情况、临床检查结果、药物使用情况、症状情况、生活及工作环境、健康状况等维度,此处篇幅限制暂省略,具体可参考演示视频和源代码。 

4. 机器学习建模预测糖尿患病情况

4.1 数据集切分

import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.metrics import auc, roc_curve
from sklearn.metrics import accuracy_score, precision_score, recall_scorey_train_all = data['Diagnosis']
X_train_all = data.drop(columns=['Diagnosis'])X_train, X_valid, y_train, y_valid = train_test_split(X_train_all, y_train_all, test_size=0.1, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X_train, y_train, test_size=0.1, random_state=42)print('train: {}, valid: {}, test: {}'.format(X_train.shape[0], X_valid.shape[0], X_test.shape[0]))

4.2 梯度提升决策树 Xgboost 模型 

df_columns = X_train.columns.values
print('===> feature count: {}'.format(len(df_columns)))xgb_params = {'eta': 0.05,'min_child_weight': 8,'colsample_bytree': 0.5,'max_depth': 4,'subsample': 0.9,'lambda': 2.0,'eval_metric': 'auc','objective': 'binary:logistic','nthread': -1,'silent': 1,'booster': 'gbtree'
}dtrain = xgb.DMatrix(X_train, y_train, feature_names=df_columns)
dvalid = xgb.DMatrix(X_valid, y_valid, feature_names=df_columns)watchlist = [(dtrain, 'train'), (dvalid, 'valid')]

4.3 模型训练

model = xgb.train(dict(xgb_params),dtrain,evals=watchlist,verbose_eval=10,early_stopping_rounds=100,num_boost_round=4000)

        训练日志:

[0]	train-auc:0.64543	valid-auc:0.54761
[10]	train-auc:0.97141	valid-auc:0.95499
[20]	train-auc:0.97530	valid-auc:0.95752
[30]	train-auc:0.97728	valid-auc:0.95941
[40]	train-auc:0.97865	valid-auc:0.95917
[50]	train-auc:0.98003	valid-auc:0.96248
[60]	train-auc:0.98180	valid-auc:0.96389
[70]	train-auc:0.98345	valid-auc:0.96614
[80]	train-auc:0.98446	valid-auc:0.96791
[90]	train-auc:0.98518	valid-auc:0.96684
[100]	train-auc:0.98612	valid-auc:0.96625
[110]	train-auc:0.98665	valid-auc:0.96743
[120]	train-auc:0.98709	valid-auc:0.96743
[130]	train-auc:0.98756	valid-auc:0.96791
[140]	train-auc:0.98839	valid-auc:0.96661
[150]	train-auc:0.98915	valid-auc:0.96637
[160]	train-auc:0.98975	valid-auc:0.96649
[170]	train-auc:0.99045	valid-auc:0.96661
[178]	train-auc:0.99088	valid-auc:0.96625

4.4 特征重要程度分布

        可以看出,HbA1c 糖化血红蛋白 的特征对于预测是否患病的重要程度最高,进一步的,分析该特征对于是否患有糖尿病的分布区别:

plt.figure(figsize=(15, 10))# 定期体检频率
plt.subplot(2, 2, 1)
sns.distplot(data[data['Diagnosis'] == 1]['HbA1c'], bins=50, label='患糖尿病')
sns.distplot(data[data['Diagnosis'] == 0]['HbA1c'], bins=50, label='未患糖尿病')
plt.title('糖化血红蛋白分布')
plt.xlabel('定期体检频率')
plt.legend()
plt.ylabel('频数')
plt.show()

        可以看出,该特征的确具有非常明显的区分效果。 

4.5 模型性能评估

4.5.1 AUC 指标评估

        使用已经训练好的模型对训练集、验证集和测试集进行预测,并计算每个数据集的预测结果的AUC(Area Under the Curve)得分

# predict train
predict_train = model.predict(dtrain)
train_auc = evaluate_score(predict_train, y_train)# predict validate
predict_valid = model.predict(dvalid)
valid_auc = evaluate_score(predict_valid, y_valid)# predict test
dtest = xgb.DMatrix(X_test, feature_names=df_columns)
predict_test = model.predict(dtest)
test_auc = evaluate_score(predict_test, y_test)print('训练集 auc = {:.7f} , 验证集 auc = {:.7f} , 测试集 auc = {:.7f}\n'.format(train_auc, valid_auc, test_auc))
训练集 auc = 0.9908796 , 验证集 auc = 0.9662537 , 测试集 auc = 0.9422857

4.5.2 测试集预测 ROC 曲线

fpr, tpr, _ = roc_curve(y_test, predict_test)
roc_auc = auc(fpr, tpr)plt.figure(figsize=(8,8))
plt.plot(fpr, tpr, color='darkorange',lw=2, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([-0.02, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC curve')
plt.legend(loc="lower right")
plt.show()

4.5.3 测试集预测结果混淆矩阵计算 

5. 基于机器学习的糖尿病数据分析与风险评估系统

5.1 系统首页

5.2 糖尿病风险评估实时预测

        在Flask 应用程序中的路由处理函数 submit_and_predict,它负责接收通过 HTTP POST 方法提交的测试文件,并使用预训练好的模型来预测糖尿病的发生概率。

@app.route('/submit_and_predict', methods=['POST'])
def submit_and_predict():"""糖尿病在线预测"""test_file = request.files['file']filename = test_file.filename# 保存上传的文件test_file_path = './static/predict_test/{}'.format(filename)test_file.save(test_file_path)test_data = pd.read_csv(test_file_path)......dtest = xgb.DMatrix(test_data, feature_names=df_columns)preds = model.predict(dtest)pred_labels = (preds > 0.5).astype(int)......return jsonify({'success': True,'header': header,'rows': rows})

6. 结论

        本项目通过可视化分析对数据进行初步探索,再通过斯皮尔曼相关性检验探究患糖尿病的影响因素,通过建立Xgboost模型对是否患有糖尿病就行建模和训练,在不知道临床测量结果的前提下,去预测某人是否会患有糖尿病,测试集预测 AUC 达到 94.2%。通过机器学习模型分析影响糖尿病的主要因素,可以帮助医疗从业者更好地了解病因和风险因素,从而制定有效的预防和治疗策略。 

 B站视频及代码下载:基于机器学习的糖尿病数据分析与风险评估系统_哔哩哔哩_bilibili

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。技术交流、源码获取认准下方 CSDN 官方提供的学长 QQ 名片 :)

精彩专栏推荐订阅:

1. Python数据挖掘精品实战案例

2. 计算机视觉 CV 精品实战案例

3. 自然语言处理 NLP 精品实战案例

这篇关于基于机器学习的糖尿病数据分析与风险评估系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1103244

相关文章

Mac系统下卸载JAVA和JDK的步骤

《Mac系统下卸载JAVA和JDK的步骤》JDK是Java语言的软件开发工具包,它提供了开发和运行Java应用程序所需的工具、库和资源,:本文主要介绍Mac系统下卸载JAVA和JDK的相关资料,需... 目录1. 卸载系统自带的 Java 版本检查当前 Java 版本通过命令卸载系统 Java2. 卸载自定

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Linux系统中的firewall-offline-cmd详解(收藏版)

《Linux系统中的firewall-offline-cmd详解(收藏版)》firewall-offline-cmd是firewalld的一个命令行工具,专门设计用于在没有运行firewalld服务的... 目录主要用途基本语法选项1. 状态管理2. 区域管理3. 服务管理4. 端口管理5. ICMP 阻断

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Windows 系统下 Nginx 的配置步骤详解

《Windows系统下Nginx的配置步骤详解》Nginx是一款功能强大的软件,在互联网领域有广泛应用,简单来说,它就像一个聪明的交通指挥员,能让网站运行得更高效、更稳定,:本文主要介绍W... 目录一、为什么要用 Nginx二、Windows 系统下 Nginx 的配置步骤1. 下载 Nginx2. 解压

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

windows系统上如何进行maven安装和配置方式

《windows系统上如何进行maven安装和配置方式》:本文主要介绍windows系统上如何进行maven安装和配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. Maven 简介2. maven的下载与安装2.1 下载 Maven2.2 Maven安装2.

使用Python实现Windows系统垃圾清理

《使用Python实现Windows系统垃圾清理》Windows自带的磁盘清理工具功能有限,无法深度清理各类垃圾文件,所以本文为大家介绍了如何使用Python+PyQt5开发一个Windows系统垃圾... 目录一、开发背景与工具概述1.1 为什么需要专业清理工具1.2 工具设计理念二、工具核心功能解析2.