int8量化和tvm实现

2024-08-24 17:58
文章标签 实现 量化 int8 tvm

本文主要是介绍int8量化和tvm实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

量化主要有两种方案

  • 直接训练量化模型如Deepcompression,Binary-Net,Tenary-Net,Dorefa-Net
  • 对训练好的float模型(以float32为例)直接进行量化(以int8为例),这边博客主要讲这个
    参考NIVIDIA 量化官方文档

int8量化原理

将已有的float32型的数据改成A = scale_A * QA + bias_A,B类似,NVIDIA实验证明可以去掉bias,即A = scale_A * QA
也即是QA(量化后的A) = A / scale_A
在这里插入图片描述
有了对应公式A = scale_A * QA,则可以将float32的数据映射到int8,但是由于float32的数据动态范围比int8要大很多,如果数据分布不均匀,极限情况比如如果float32的原始数据都在127的周围,最后量化后都是127了,精度损失严重,而int8其他的数值完全没有用到,没有完全利用int8的数值范围,所以直接最大最小映射不是一个最优方案。
在这里插入图片描述
那能不能找到一个threshold,丢掉一部分float32数值,然后能够更加均匀地映射,从而充分地利用到int8的数值范围
在这里插入图片描述

在Softmax原理讲解中提到
交叉熵= 熵 + KL散度(相对熵)
1)信息熵:编码方案完美时,最短平均编码长度的是多少。
2)交叉熵:用次优编码方式时平均编码长度是多少,即需要多少个bits来表示
平均编码长度 = 最短平均编码长度 + 一个增量
3)相对熵:编码方案不一定完美时,平均编码长度相对于最小值的增加值。(即上面那个增量)
int8编码时所需编码长度 = float32编码时所需编码长度 + int8多需要的编码长度
因此相对熵就是int8float32(次优编码)比float32(最优编码)多出来的编码长度越小越好,所以需要找到一个合适的threshold,使得两者之间的相对熵最小即KL散度
这个KL距离代表了损失的信息
在这里插入图片描述

如何寻找一个合适的threshold呢,需要一个校准集合 Calibration Dataset,在校准数据集上运行FP32推理。收集激活的直方图,并生成一组具有不同阈值的8位表示法,并选择具有最少kl散度的表示;kl-散度是在参考分布(即FP32激活)和量化分布之间(即8位量化激活)之间。
在这里插入图片描述

TVM实现int8量化

# 从前端load模型,mxnet、onnx等
sym, _ = relay.frontend.from_mxnet(sym, {'data': data_shape})
# 随机生成test的模型参数,如果有已训练好的模型参数可以忽略
sym, params = tvm.relay.testing.create_workload(sym)
# 模型量化
with relay.quantize.qconfig(skip_k_conv=0, round_for_shift=True):sym = relay.quantize.quantize(sym, params)
# 模型优化(经过试验,tvm系统默认有一些常用的resnet的卷积优化,注意这个优化是和卷积配置包括输入输出kernel的数量绑定的)
# 如果使用系统已有的卷积优化配置则速度可保证,如果使用一些新奇的卷积结构需要使用auto tuning优化,不然很慢
参考 https://docs.tvm.ai/tutorials/autotvm/tune_relay_cuda.html#auto-tuning-a-convolutional-network-for-nvidia-gpu
# load最优的优化算子,然后编译模型
with autotvm.apply_history_best(log_file):print("Compile...")with relay.build_config(opt_level=3):graph, lib, params = relay.build_module.build(net, target=target, params=params)# 加载参数并运行ctx = tvm.context(str(target), 0)module = runtime.create(graph, lib, ctx)data_tvm = tvm.nd.array((np.random.uniform(size=input_shape)).astype(dtype))module.set_input('data', data_tvm)module.set_input(**params)# module.set_input(**{k:tvm.nd.array(v, ctx) for k, v in params.items()})module.run()# 测试forward时间e = module.module.time_evaluator("run", ctx, number=2000, repeat=3)t = module(data_tvm).resultst = np.array(t) * 1000print('{} (batch={}): {} ms'.format(name, batch, t.mean()))

tvm的一些代码链接tvm-cuda-int8-benchmark


这篇关于int8量化和tvm实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1103193

相关文章

SpringBoot集成XXL-JOB实现任务管理全流程

《SpringBoot集成XXL-JOB实现任务管理全流程》XXL-JOB是一款轻量级分布式任务调度平台,功能丰富、界面简洁、易于扩展,本文介绍如何通过SpringBoot项目,使用RestTempl... 目录一、前言二、项目结构简述三、Maven 依赖四、Controller 代码详解五、Service

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

GO语言短变量声明的实现示例

《GO语言短变量声明的实现示例》在Go语言中,短变量声明是一种简洁的变量声明方式,使用:=运算符,可以自动推断变量类型,下面就来具体介绍一下如何使用,感兴趣的可以了解一下... 目录基本语法功能特点与var的区别适用场景注意事项基本语法variableName := value功能特点1、自动类型推

基于Python实现自动化邮件发送系统的完整指南

《基于Python实现自动化邮件发送系统的完整指南》在现代软件开发和自动化流程中,邮件通知是一个常见且实用的功能,无论是用于发送报告、告警信息还是用户提醒,通过Python实现自动化的邮件发送功能都能... 目录一、前言:二、项目概述三、配置文件 `.env` 解析四、代码结构解析1. 导入模块2. 加载环

使用shardingsphere实现mysql数据库分片方式

《使用shardingsphere实现mysql数据库分片方式》本文介绍如何使用ShardingSphere-JDBC在SpringBoot中实现MySQL水平分库,涵盖分片策略、路由算法及零侵入配置... 目录一、ShardingSphere 简介1.1 对比1.2 核心概念1.3 Sharding-Sp

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

python 线程池顺序执行的方法实现

《python线程池顺序执行的方法实现》在Python中,线程池默认是并发执行任务的,但若需要实现任务的顺序执行,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录方案一:强制单线程(伪顺序执行)方案二:按提交顺序获取结果方案三:任务间依赖控制方案四:队列顺序消

Redis实现分布式锁全过程

《Redis实现分布式锁全过程》文章介绍Redis实现分布式锁的方法,包括使用SETNX和EXPIRE命令确保互斥性与防死锁,Redisson客户端提供的便捷接口,以及Redlock算法通过多节点共识... 目录Redis实现分布式锁1. 分布式锁的基本原理2. 使用 Redis 实现分布式锁2.1 获取锁

Linux实现查看某一端口是否开放

《Linux实现查看某一端口是否开放》文章介绍了三种检查端口6379是否开放的方法:通过lsof查看进程占用,用netstat区分TCP/UDP监听状态,以及用telnet测试远程连接可达性... 目录1、使用lsof 命令来查看端口是否开放2、使用netstat 命令来查看端口是否开放3、使用telnet