int8量化和tvm实现

2024-08-24 17:58
文章标签 实现 量化 int8 tvm

本文主要是介绍int8量化和tvm实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

量化主要有两种方案

  • 直接训练量化模型如Deepcompression,Binary-Net,Tenary-Net,Dorefa-Net
  • 对训练好的float模型(以float32为例)直接进行量化(以int8为例),这边博客主要讲这个
    参考NIVIDIA 量化官方文档

int8量化原理

将已有的float32型的数据改成A = scale_A * QA + bias_A,B类似,NVIDIA实验证明可以去掉bias,即A = scale_A * QA
也即是QA(量化后的A) = A / scale_A
在这里插入图片描述
有了对应公式A = scale_A * QA,则可以将float32的数据映射到int8,但是由于float32的数据动态范围比int8要大很多,如果数据分布不均匀,极限情况比如如果float32的原始数据都在127的周围,最后量化后都是127了,精度损失严重,而int8其他的数值完全没有用到,没有完全利用int8的数值范围,所以直接最大最小映射不是一个最优方案。
在这里插入图片描述
那能不能找到一个threshold,丢掉一部分float32数值,然后能够更加均匀地映射,从而充分地利用到int8的数值范围
在这里插入图片描述

在Softmax原理讲解中提到
交叉熵= 熵 + KL散度(相对熵)
1)信息熵:编码方案完美时,最短平均编码长度的是多少。
2)交叉熵:用次优编码方式时平均编码长度是多少,即需要多少个bits来表示
平均编码长度 = 最短平均编码长度 + 一个增量
3)相对熵:编码方案不一定完美时,平均编码长度相对于最小值的增加值。(即上面那个增量)
int8编码时所需编码长度 = float32编码时所需编码长度 + int8多需要的编码长度
因此相对熵就是int8float32(次优编码)比float32(最优编码)多出来的编码长度越小越好,所以需要找到一个合适的threshold,使得两者之间的相对熵最小即KL散度
这个KL距离代表了损失的信息
在这里插入图片描述

如何寻找一个合适的threshold呢,需要一个校准集合 Calibration Dataset,在校准数据集上运行FP32推理。收集激活的直方图,并生成一组具有不同阈值的8位表示法,并选择具有最少kl散度的表示;kl-散度是在参考分布(即FP32激活)和量化分布之间(即8位量化激活)之间。
在这里插入图片描述

TVM实现int8量化

# 从前端load模型,mxnet、onnx等
sym, _ = relay.frontend.from_mxnet(sym, {'data': data_shape})
# 随机生成test的模型参数,如果有已训练好的模型参数可以忽略
sym, params = tvm.relay.testing.create_workload(sym)
# 模型量化
with relay.quantize.qconfig(skip_k_conv=0, round_for_shift=True):sym = relay.quantize.quantize(sym, params)
# 模型优化(经过试验,tvm系统默认有一些常用的resnet的卷积优化,注意这个优化是和卷积配置包括输入输出kernel的数量绑定的)
# 如果使用系统已有的卷积优化配置则速度可保证,如果使用一些新奇的卷积结构需要使用auto tuning优化,不然很慢
参考 https://docs.tvm.ai/tutorials/autotvm/tune_relay_cuda.html#auto-tuning-a-convolutional-network-for-nvidia-gpu
# load最优的优化算子,然后编译模型
with autotvm.apply_history_best(log_file):print("Compile...")with relay.build_config(opt_level=3):graph, lib, params = relay.build_module.build(net, target=target, params=params)# 加载参数并运行ctx = tvm.context(str(target), 0)module = runtime.create(graph, lib, ctx)data_tvm = tvm.nd.array((np.random.uniform(size=input_shape)).astype(dtype))module.set_input('data', data_tvm)module.set_input(**params)# module.set_input(**{k:tvm.nd.array(v, ctx) for k, v in params.items()})module.run()# 测试forward时间e = module.module.time_evaluator("run", ctx, number=2000, repeat=3)t = module(data_tvm).resultst = np.array(t) * 1000print('{} (batch={}): {} ms'.format(name, batch, t.mean()))

tvm的一些代码链接tvm-cuda-int8-benchmark


这篇关于int8量化和tvm实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1103193

相关文章

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的