回归分析系列19— 多项式回归进阶

2024-08-24 14:28

本文主要是介绍回归分析系列19— 多项式回归进阶,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

24 多项式回归进阶

24.1 简介

多项式回归是一种扩展线性回归的方法,用来建模非线性关系。通过将输入变量升至多项式次幂,可以捕捉数据中的非线性特征。虽然模型复杂度增加,但也带来了更高的拟合能力。然而,过高次幂的多项式可能会导致过拟合问题。

24.2 多项式特征的构建

在多项式回归中,我们首先需要生成多项式特征,即将原始特征升至不同次幂并组合。Python中的scikit-learn库提供了PolynomialFeatures类,可以方便地构建多项式特征。

from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import make_pipeline
from sklearn.metrics import mean_squared_error
import numpy as np# 生成模拟数据
np.random.seed(42)
X = np.random.rand(100, 1) * 10 - 5  # 输入范围[-5, 5]
y = 0.5 * X**2 - X + 2 + np.random.randn(100, 1).flatten()  # 二次函数关系加噪声# 构建多项式回归模型
poly = PolynomialFeatures(degree=2)
model = make_pipeline(poly, LinearRegression())
model.fit(X, y)# 预测
y_pred = model.predict(X)
mse = mean_squared_error(y, y_pred)print(f'Polynomial Regression MSE: {mse:.3f}')

在这段代码中,我们构建了一个二次多项式回归模型,并计算了均方误差(MSE)以评估模型性能。

24.3 多项式回归的优势与挑战

多项式回归的主要优势在于它能够建模复杂的非线性关系。然而,随着多项式次数的增加,模型的复杂度也会迅速上升,导致过拟合的风险。此外,高次多项式的回归系数往往非常大,对输入数据的微小变化也会非常敏感。

为了解决这些问题,我们可以使用正则化方法(如岭回归或Lasso回归)来约束回归系数。

from sklearn.linear_model import Ridge# 使用岭回归进行多项式回归
ridge_model = make_pipeline(PolynomialFeatures(degree=2), Ridge(alpha=1.0))
ridge_model.fit(X, y)# 预测并计算MSE
y_pred_ridge = ridge_model.predict(X)
mse_ridge = mean_squared_error(y, y_pred_ridge)print(f'Polynomial Ridge Regression MSE: {mse_ridge:.3f}')

通过在多项式回归中引入正则化,我们可以有效控制模型的复杂度,从而降低过拟合的风险。

24.4 实例分析:预测房价

多项式回归在许多实际应用中都有广泛应用,例如房价预测。在这种情况下,我们可以将平方英尺、卧室数量等特征升至不同次幂,来捕捉复杂的价格影响因素。

# 假设有一个房价数据集,我们可以使用多项式回归来预测房价# 示例数据
X_house = np.random.rand(100, 1) * 2000 + 500  # 房屋面积范围[500, 2500]平方英尺
y_house = 300000 + 100 * X_house + np.random.randn(100, 1).flatten() * 10000  # 假设线性关系加噪声# 构建三次多项式回归模型
poly_house = PolynomialFeatures(degree=3)
house_model = make_pipeline(poly_house, LinearRegression())
house_model.fit(X_house, y_house)# 预测房价
y_pred_house = house_model.predict(X_house)
mse_house = mean_squared_error(y_house, y_pred_house)print(f'Polynomial House Price Prediction MSE: {mse_house:.3f}')

这个例子展示了如何使用多项式回归来预测房价,以及如何通过提高多项式的次数来捕捉更加复杂的模式。

24.5 多项式回归的实际应用

尽管多项式回归能有效地建模非线性关系,但它并不是万能的。对于维度较高的数据,多项式回归可能表现不佳,且计算成本较高。在实际应用中,我们通常需要结合交叉验证、正则化等手段,来选择合适的多项式次数以及模型参数。

 

这篇关于回归分析系列19— 多项式回归进阶的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1102739

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种