SPSS和MATLAB实现【典型相关分析】

2024-08-24 13:20

本文主要是介绍SPSS和MATLAB实现【典型相关分析】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        典型相关分析(Canonical Correlation analysis ),是用于研究 两组 变量(每组变量中都可能有多个指标) 之间相关关系的一种多元统计方法。它能够揭示出两组变量之间的内在联系

        我们之前总结的相关性分析,也就是上图中的简单相关分析,用于分析一组变量——也即两两之间的相关性,计算方式就是本科阶段概率论学过的斯皮尔曼相关系数。多变量相关分析则是分析一组具有共同点的变量与某个变量的相关性(多对一)。而今天介绍的典型相关分析,则是多对多,换句话说,即研究两组变量之间的相关性,例如:喜欢骑自行车的群体和喜欢开车的群体有什么关系?喜欢看足球的男生和执着的男生有什么关系?以此类推,具体看下文。


一.引例

假设有下面一张表,我自己用rand函数编的,没什么实际意义:

现在有需求,分析:

  1. 成绩和娱乐时间是否存在某种关系?
  2. 文科主课是否和看书、看外剧时间存在某种关系?

显然,对于这种情况,分别求彼此的相关系数是无法达到要求的——他无法直观说明多个因素的共同作用~

如果是两两比较,那么我们直接计算相关系数即可。因此不过不妨这样考虑:对于问题一来说假设学校更看重数学成绩,而打游戏是最影响学习的存在,那么我们可以计算数学和打游戏时间的相关系数,直接代替了问题一种成绩和娱乐时间的相关系数!

二.理论 

收收味,理工男不能这么随性,上面所表达的意思,如果你在复习考研数学,你可以从下面两个角度,形象地理解:

  • 数学和玩游戏是主要矛盾,因此可以类比计算极限中的抓大头思想:当x趋于无穷,我们只需要看高次方——在这里,我们只需要关注主要矛盾而忽视次要矛盾
  •  语文、数学、英语之间存在线性相关性,因此我们可以用数学直接代表了语文和英语——相当于语文英语两个多余的变量(不改变向量组的秩)。而玩游戏时间也是同理。

从高数和线代这两个不严谨的思考方式来比喻,强调的是:在成绩这一类变量中,选择主要矛盾数学,在不利影响着一类变量中,选择主要矛盾玩游戏时间,计算两者之间的相关性——即可代表成绩和不利影响两类变量之间的相关性——这就是典型相关分析一种通俗的解释!!!

        实际上,虽然上面的例子纯属博主在“胡扯”,严格的理论部分,也是将各个变量看做一个独立的列向量,而这个找所谓主要矛盾(代表)的过程,往往通过该组变量的线性组合。

理论性的部分不用管太多——除非你是相关专业~否则只需要知道这么几个事情:

  • 在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数;
  • 选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对; 直到两组变量之间的相关性被提取完毕为止。
  • 被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数

三.操作方式

1.SPSS实现

需要注意的是,spss版本应该高于26(不然不能直接用这个功能!)博主用的27代~

安装,导入数据,检查数据类型这都是基本功,这里不再赘述~需要注意所有变量都是【标度】!也就是尺子形状:

导入数据后,点击【分析-相关-典型相关性】

根据前面提到的方式分组!

然后就是分析结果:

这一张表关注后面的显著性~我们要通过它确定典型相关系数的个数。如上,这数据瞎编的没有参考性,假设我们规定P值为0.6(实际上0.05或者0.1)那么只有一个相关系数符合要求!即第一个~

注:

  • p<0.01,说明在99%的置信水平上拒绝原假设:
  • p<0.05,说明在95%的置信水平上拒绝原假设;
  • p<0.10,说明在90%的置信水平上拒绝原假设;
  • p>0.01,说明在99%的置信水平无法拒绝原假设:
  • p>0.05,说明在95%的置信水平上无法拒绝原假设;
  • p>0.10,说明在90%的置信水平上无法拒绝原假设;

然后看这一张表的第一列:写出线性组合:(有几个显著性达标的相关系数就写几组!这里只写一组~)

  • 成绩集合X=-.035*语文+0.277*数学+1.137*英语
  • 不利因素集合Y=0.314*玩游戏+1.154*看书-0.626*看外剧

典型变量每个分量前面的系数代表着重要程度,可结合典型相关系数进行分析。

这一组对应的相关性为0.858~


至于后面的,随便写写就行~

2.MATLAB实现

原理差不多,这里博主直接把数据粘了进去,你也可以用一些别的什么read函数。

这里用到一个新的canoncorr函数~

X =data1; %语数英成绩
Y = data2; %娱乐时间[A,B,r,U,V,stats]=canoncorr(X,Y);%分析结果
%通过返回的stats里面的p值进行,选择第几典型相关对相关系数
%选择p<0.01的部分或者p<0.05

 运行后可以得到一系列答案:

首先看变量r中,即为典型相关系数,各位根据自己选择的显著性水平选择需要保留的个数。可以返回去看看,和SPSS计算的一致!

A和B即上文提到的线性组合的组合系数:

 把线性组合写出来以后各位自圆其说就行,主要关注点还是典型相关系数!

此外还有一个叫stats的结构体变量,大家看看就行,全是数理统计的知识:

  •  Wilks:似然比统计量
  •  df1,df2:自由度
  •  F:统计量
  •  pF:F统计量右边检验概率值
  •  chisq:卡方统计量
  •  pChisq:卡方统计量检验概率值
  •  def:卡方检验自由度

四.实战案例

        怎么说,实际上CCA也就是典型相关分析,不是一个很高端的统计方式。所以博主在本科期间参加的十多次大大小小的数模竞赛,只用过一次典型相关分析,也就是2022年的华数杯,虽然还拿了一等奖。。。不过这个比赛本身含金量有限,而且我们还用了BPNN和模拟退火,大概率不是他的功劳。。。。。


写法如下,看看就行:

看看就好,这不是一个很让人眼前一亮的方式——建议还是用斯皮尔曼相关系数和主成分分析处理类似的题目~

这篇关于SPSS和MATLAB实现【典型相关分析】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1102592

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配