poj 1222 EXTENDED LIGHTS OUT (高斯消元解异或方程组 开关问题)

本文主要是介绍poj 1222 EXTENDED LIGHTS OUT (高斯消元解异或方程组 开关问题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

近距离观摩今天北京站的比赛,向志愿者学姐要了一份题目,看了看H题;

因为数据被弱化,瞬间就想到了背包;

就先研究下标准解法——异或方程组;



下面为转载文:

题意:有一个5*6的矩阵,每个位置都表示按钮和灯,1表示亮,0表示灭。每当按下一个位置的按钮,它和它周围灯的状态全部翻转,问在这样的一个方阵中按下哪些按钮可以把整个方阵都变成灭的,这时1表示按了,0表示没按。

以下分析部分转自:http://blog.csdn.net/shiren_Bod/article/details/5766907

这个游戏有一些技巧: 
1、按按钮的顺序可以随便。 
2、任何一个按钮都最多需要按下1次。因为按下第二次刚好抵消第一次,等于没有按。 

这个问题可以转化成数学问题。 
一个灯的布局可以看成一个0、1矩阵。以3x3为例: 
0 1 0 
1 1 0 
0 1 1 
表示一个布局。其中0表示灯灭,1表示灯亮。 
每次按下按钮(POJ1222)或者叫一个宿舍关灯(0998),可以看成在原矩阵上加(模2加,就是按位异或)上一个如下的矩阵: 
0 1 0 
1 1 1 
0 1 0 
上述矩阵中的1表示按下第2行第2列的按钮时,作用的范围。如果按左上角的按钮,就是: 
1 1 0 
1 0 0 
0 0 0 

我们记L为待求解的原始布局矩阵。A(i,j)表示按下第i行第j列的按钮时的作用范围矩阵。在上述例子中, 
L= 
0 1 0 
1 1 0 
0 1 1 

A(1,1)= 
1 1 0 
1 0 0 
0 0 0 

A(2,2)= 
0 1 0 
1 1 1 
0 1 0 

假设x(i,j)表示:想要使得L回到全灭状态,第i行第j列的按钮是否需要按下。0表示不按,1表示按下。那么,这个游戏就转化为如下方程的求解: 
L + x(1,1)*A(1,1) + x(1,2)*A(1,2) + x(1,3)*A(1,3) + x(2,1)*A(2,1) + ... + x(3,3)*A(3,3) = 0 

其中x(i,j)是未知数。方程右边的0表示零矩阵,表示全灭的状态。直观的理解就是:原来的L状态,经过了若干个A(i,j)的变换,最终变成0:全灭状态。 
由于是0、1矩阵,上述方程也可以写成: 
x(1,1)*A(1,1) + x(1,2)*A(1,2) + x(1,3)*A(1,3) + x(2,1)*A(2,1) + ... + x(3,3)*A(3,3) = L 

这是一个矩阵方程。两个矩阵相等,充要条件是矩阵中每个元素都相等。将上述方程展开,便转化成了一个9元1次方程组: 

简单地记做:AA * XX = LL 

这个方程有唯一解: 
x(1,1) x(1,2) x(1,3) 
x(2,1) x(2,2) x(2,3) 
x(3,1) x(3,2) x(3,3) 

1 1 1 
0 0 0 
0 0 1 

也就是说,按下第一行的3个按钮,和右下角的按钮,就

能使L状态变成全灭状态。 
对于固定行列的阵列来说,AA矩阵也是确定的。是否存在解,解是否唯一,只与AA矩阵有关。对于唯一解的情形,只要将LL乘以AA的逆矩阵即可。具体求AA的逆矩阵的方法,可以用高斯消元法。 

由于是0、1矩阵,上述方程也可以写成:

将1式两边同时加上一个L矩阵就可以变成
x(1,1)*A(1,1) + x(1,2)*A(1,2) + x(1,3)*A(1,3) + x(2,1)*A(2,1) + ... + x(3,3)*A(3,3) = L

A(1,1)把矩阵 转化为一个列向量,L也转化为一个列向量,

将sigma xi*Ai=Li 对应位置的值相等就可以建立方程组了

X1*A(1,1)1+X2*A(1,2)1+X3*A(1,3)1+…………X30*A(30,30)1=L1;    mod 2

X1*A(1,1)2+X2*A(1,2)2+X3*A(1,3)2+…………X30*A(30,30)2=L2;    mod 2

X1*A(1,1)3+X2*A(1,2)3+X3*A(1,3)3+…………X30*A(30,30)3=L3    mod 2

…….

…….

…….

X1*A(1,1)30+X2*A(1,2)30+X3*A(1,3)30+…………X30*A(30,30)30=L30; mod 2

其中A(i,j)k 表示列向量A中第K个元素

这里的*表示点乘,Xi取(1,0) +表示模2加法,所以在高斯消元的时候可以用^异或运算


1个开关最多控制5个灯,在构造的矩阵中,a[i][j]=1表示第i个开关可以影响到j号灯




#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;const int N=31;
int a[N][N];  //系数矩阵
int ans[N];/*
解异或方程可以套用高斯消元法,只须将原来的加减操作替换成异或操作就可以
两个方程的左边异或之后,它们的公共项就没有了。
*/void Debug ()
{for (int i=0;i<N-1;i++)for (int j=0;j<N-1;j++)printf (j==N-2?"%d\n":"%d ",a[i][j]);
}void Gauss ()
{int i,j,k;for (k=0;k<30;k++){i=k;for (;i<30;i++)//对于k=0..N-1,找到一个M[i][k]不为0的行iif (a[i][k]!=0)break;for (j=0;j<=30;j++)  //把找到的第i行与第k行交换swap (a[k][j],a[i][j]);
/*用第k行去异或下面所有M[i][j]不为0的行i,消去它们的第k个系数,这样就将原矩阵化成了上三角矩阵
最后一行只有一个未知数,这个未知数就已经求出来了,
用它跟上面所有含有这个未知数的方程异或,就消去了所有的着个未知数,
此时倒数第二行也只有一个未知数,它就被求出来了,用这样的方法可以自下而上求出所有未知数。
*/for (i=0;i<30;i++)if (k!=i && a[i][k])for (j=0;j<=30;j++)   // <= a[i][j]=a[k][j]^a[i][j];}for (i=0;i<30;i++)ans[i]=a[i][30];
}int main ()
{  
#ifdef ONLINE_JUDGE
#elsefreopen("read.txt","r",stdin);
#endifint T,i;scanf("%d",&T);for (int Cas=1;Cas<=T;Cas++){memset(a,0,sizeof(a));memset(ans,0,sizeof(ans));for (i=0;i<30;i++){scanf("%d",&a[i][30]);ans[i]=0;}for (i=0;i<30;i++){a[i][i]=1;if (i%6!=0) a[i-1][i]=1; //if (i%6!=5) a[i+1][i]=1;if (i>5) a[i-6][i]=1;if (i<24) a[i+6][i]=1;}
//		Debug();Gauss();printf ("PUZZLE #%d\n",Cas);for (i=0;i<30;i++)printf (i%6==5?"%d\n":"%d ",ans[i]);}return 0;
}


这篇关于poj 1222 EXTENDED LIGHTS OUT (高斯消元解异或方程组 开关问题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1102439

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

nginx中端口无权限的问题解决

《nginx中端口无权限的问题解决》当Nginx日志报错bind()to80failed(13:Permissiondenied)时,这通常是由于权限不足导致Nginx无法绑定到80端口,下面就来... 目录一、问题原因分析二、解决方案1. 以 root 权限运行 Nginx(不推荐)2. 为 Nginx

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原