poj 1222 EXTENDED LIGHTS OUT (高斯消元解异或方程组 开关问题)

本文主要是介绍poj 1222 EXTENDED LIGHTS OUT (高斯消元解异或方程组 开关问题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

近距离观摩今天北京站的比赛,向志愿者学姐要了一份题目,看了看H题;

因为数据被弱化,瞬间就想到了背包;

就先研究下标准解法——异或方程组;



下面为转载文:

题意:有一个5*6的矩阵,每个位置都表示按钮和灯,1表示亮,0表示灭。每当按下一个位置的按钮,它和它周围灯的状态全部翻转,问在这样的一个方阵中按下哪些按钮可以把整个方阵都变成灭的,这时1表示按了,0表示没按。

以下分析部分转自:http://blog.csdn.net/shiren_Bod/article/details/5766907

这个游戏有一些技巧: 
1、按按钮的顺序可以随便。 
2、任何一个按钮都最多需要按下1次。因为按下第二次刚好抵消第一次,等于没有按。 

这个问题可以转化成数学问题。 
一个灯的布局可以看成一个0、1矩阵。以3x3为例: 
0 1 0 
1 1 0 
0 1 1 
表示一个布局。其中0表示灯灭,1表示灯亮。 
每次按下按钮(POJ1222)或者叫一个宿舍关灯(0998),可以看成在原矩阵上加(模2加,就是按位异或)上一个如下的矩阵: 
0 1 0 
1 1 1 
0 1 0 
上述矩阵中的1表示按下第2行第2列的按钮时,作用的范围。如果按左上角的按钮,就是: 
1 1 0 
1 0 0 
0 0 0 

我们记L为待求解的原始布局矩阵。A(i,j)表示按下第i行第j列的按钮时的作用范围矩阵。在上述例子中, 
L= 
0 1 0 
1 1 0 
0 1 1 

A(1,1)= 
1 1 0 
1 0 0 
0 0 0 

A(2,2)= 
0 1 0 
1 1 1 
0 1 0 

假设x(i,j)表示:想要使得L回到全灭状态,第i行第j列的按钮是否需要按下。0表示不按,1表示按下。那么,这个游戏就转化为如下方程的求解: 
L + x(1,1)*A(1,1) + x(1,2)*A(1,2) + x(1,3)*A(1,3) + x(2,1)*A(2,1) + ... + x(3,3)*A(3,3) = 0 

其中x(i,j)是未知数。方程右边的0表示零矩阵,表示全灭的状态。直观的理解就是:原来的L状态,经过了若干个A(i,j)的变换,最终变成0:全灭状态。 
由于是0、1矩阵,上述方程也可以写成: 
x(1,1)*A(1,1) + x(1,2)*A(1,2) + x(1,3)*A(1,3) + x(2,1)*A(2,1) + ... + x(3,3)*A(3,3) = L 

这是一个矩阵方程。两个矩阵相等,充要条件是矩阵中每个元素都相等。将上述方程展开,便转化成了一个9元1次方程组: 

简单地记做:AA * XX = LL 

这个方程有唯一解: 
x(1,1) x(1,2) x(1,3) 
x(2,1) x(2,2) x(2,3) 
x(3,1) x(3,2) x(3,3) 

1 1 1 
0 0 0 
0 0 1 

也就是说,按下第一行的3个按钮,和右下角的按钮,就

能使L状态变成全灭状态。 
对于固定行列的阵列来说,AA矩阵也是确定的。是否存在解,解是否唯一,只与AA矩阵有关。对于唯一解的情形,只要将LL乘以AA的逆矩阵即可。具体求AA的逆矩阵的方法,可以用高斯消元法。 

由于是0、1矩阵,上述方程也可以写成:

将1式两边同时加上一个L矩阵就可以变成
x(1,1)*A(1,1) + x(1,2)*A(1,2) + x(1,3)*A(1,3) + x(2,1)*A(2,1) + ... + x(3,3)*A(3,3) = L

A(1,1)把矩阵 转化为一个列向量,L也转化为一个列向量,

将sigma xi*Ai=Li 对应位置的值相等就可以建立方程组了

X1*A(1,1)1+X2*A(1,2)1+X3*A(1,3)1+…………X30*A(30,30)1=L1;    mod 2

X1*A(1,1)2+X2*A(1,2)2+X3*A(1,3)2+…………X30*A(30,30)2=L2;    mod 2

X1*A(1,1)3+X2*A(1,2)3+X3*A(1,3)3+…………X30*A(30,30)3=L3    mod 2

…….

…….

…….

X1*A(1,1)30+X2*A(1,2)30+X3*A(1,3)30+…………X30*A(30,30)30=L30; mod 2

其中A(i,j)k 表示列向量A中第K个元素

这里的*表示点乘,Xi取(1,0) +表示模2加法,所以在高斯消元的时候可以用^异或运算


1个开关最多控制5个灯,在构造的矩阵中,a[i][j]=1表示第i个开关可以影响到j号灯




#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;const int N=31;
int a[N][N];  //系数矩阵
int ans[N];/*
解异或方程可以套用高斯消元法,只须将原来的加减操作替换成异或操作就可以
两个方程的左边异或之后,它们的公共项就没有了。
*/void Debug ()
{for (int i=0;i<N-1;i++)for (int j=0;j<N-1;j++)printf (j==N-2?"%d\n":"%d ",a[i][j]);
}void Gauss ()
{int i,j,k;for (k=0;k<30;k++){i=k;for (;i<30;i++)//对于k=0..N-1,找到一个M[i][k]不为0的行iif (a[i][k]!=0)break;for (j=0;j<=30;j++)  //把找到的第i行与第k行交换swap (a[k][j],a[i][j]);
/*用第k行去异或下面所有M[i][j]不为0的行i,消去它们的第k个系数,这样就将原矩阵化成了上三角矩阵
最后一行只有一个未知数,这个未知数就已经求出来了,
用它跟上面所有含有这个未知数的方程异或,就消去了所有的着个未知数,
此时倒数第二行也只有一个未知数,它就被求出来了,用这样的方法可以自下而上求出所有未知数。
*/for (i=0;i<30;i++)if (k!=i && a[i][k])for (j=0;j<=30;j++)   // <= a[i][j]=a[k][j]^a[i][j];}for (i=0;i<30;i++)ans[i]=a[i][30];
}int main ()
{  
#ifdef ONLINE_JUDGE
#elsefreopen("read.txt","r",stdin);
#endifint T,i;scanf("%d",&T);for (int Cas=1;Cas<=T;Cas++){memset(a,0,sizeof(a));memset(ans,0,sizeof(ans));for (i=0;i<30;i++){scanf("%d",&a[i][30]);ans[i]=0;}for (i=0;i<30;i++){a[i][i]=1;if (i%6!=0) a[i-1][i]=1; //if (i%6!=5) a[i+1][i]=1;if (i>5) a[i-6][i]=1;if (i<24) a[i+6][i]=1;}
//		Debug();Gauss();printf ("PUZZLE #%d\n",Cas);for (i=0;i<30;i++)printf (i%6==5?"%d\n":"%d ",ans[i]);}return 0;
}


这篇关于poj 1222 EXTENDED LIGHTS OUT (高斯消元解异或方程组 开关问题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1102439

相关文章

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co

如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socket read timed out的问题

《如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socketreadtimedout的问题》:本文主要介绍解决Druid线程... 目录异常信息触发场景找到版本发布更新的说明从版本更新信息可以看到该默认逻辑已经去除总结异常信息触发场景复

VS配置好Qt环境之后但无法打开ui界面的问题解决

《VS配置好Qt环境之后但无法打开ui界面的问题解决》本文主要介绍了VS配置好Qt环境之后但无法打开ui界面的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目UKeLvb录找到Qt安装目录中designer.UKeLvBexe的路径找到vs中的解决方案资源

MySQL启动报错:InnoDB表空间丢失问题及解决方法

《MySQL启动报错:InnoDB表空间丢失问题及解决方法》在启动MySQL时,遇到了InnoDB:Tablespace5975wasnotfound,该错误表明MySQL在启动过程中无法找到指定的s... 目录mysql 启动报错:InnoDB 表空间丢失问题及解决方法错误分析解决方案1. 启用 inno

Java使用MethodHandle来替代反射,提高性能问题

《Java使用MethodHandle来替代反射,提高性能问题》:本文主要介绍Java使用MethodHandle来替代反射,提高性能问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录一、认识MethodHandle1、简介2、使用方式3、与反射的区别二、示例1、基本使用2、(重要)

电脑蓝牙连不上怎么办? 5 招教你轻松修复Mac蓝牙连接问题的技巧

《电脑蓝牙连不上怎么办?5招教你轻松修复Mac蓝牙连接问题的技巧》蓝牙连接问题是一些Mac用户经常遇到的常见问题之一,在本文章中,我们将提供一些有用的提示和技巧,帮助您解决可能出现的蓝牙连接问... 蓝牙作为一种流行的无线技术,已经成为我们连接各种设备的重要工具。在 MAC 上,你可以根据自己的需求,轻松地

Java 中的跨域问题解决方法

《Java中的跨域问题解决方法》跨域问题本质上是浏览器的一种安全机制,与Java本身无关,但Java后端开发者需要理解其来源以便正确解决,下面给大家介绍Java中的跨域问题解决方法,感兴趣的朋友一起... 目录1、Java 中跨域问题的来源1.1. 浏览器同源策略(Same-Origin Policy)1.

如何清理MySQL中的binlog问题

《如何清理MySQL中的binlog问题》:本文主要介绍清理MySQL中的binlog问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目http://www.chinasem.cn录清理mysql中的binlog1.查看binlog过期时间2. 修改binlog过期

如何解决yum无法安装epel-release的问题

《如何解决yum无法安装epel-release的问题》:本文主要介绍如何解决yum无法安装epel-release的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录yum无法安装epel-release尝试了第一种方法第二种方法(我就是用这种方法解决的)总结yum

IDEA下"File is read-only"可能原因分析及"找不到或无法加载主类"的问题

《IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题》:本文主要介绍IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题,具有很好的参... 目录1.File is read-only”可能原因2.“找不到或无法加载主类”问题的解决总结1.File