poj 1222 EXTENDED LIGHTS OUT (高斯消元解异或方程组 开关问题)

本文主要是介绍poj 1222 EXTENDED LIGHTS OUT (高斯消元解异或方程组 开关问题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

近距离观摩今天北京站的比赛,向志愿者学姐要了一份题目,看了看H题;

因为数据被弱化,瞬间就想到了背包;

就先研究下标准解法——异或方程组;



下面为转载文:

题意:有一个5*6的矩阵,每个位置都表示按钮和灯,1表示亮,0表示灭。每当按下一个位置的按钮,它和它周围灯的状态全部翻转,问在这样的一个方阵中按下哪些按钮可以把整个方阵都变成灭的,这时1表示按了,0表示没按。

以下分析部分转自:http://blog.csdn.net/shiren_Bod/article/details/5766907

这个游戏有一些技巧: 
1、按按钮的顺序可以随便。 
2、任何一个按钮都最多需要按下1次。因为按下第二次刚好抵消第一次,等于没有按。 

这个问题可以转化成数学问题。 
一个灯的布局可以看成一个0、1矩阵。以3x3为例: 
0 1 0 
1 1 0 
0 1 1 
表示一个布局。其中0表示灯灭,1表示灯亮。 
每次按下按钮(POJ1222)或者叫一个宿舍关灯(0998),可以看成在原矩阵上加(模2加,就是按位异或)上一个如下的矩阵: 
0 1 0 
1 1 1 
0 1 0 
上述矩阵中的1表示按下第2行第2列的按钮时,作用的范围。如果按左上角的按钮,就是: 
1 1 0 
1 0 0 
0 0 0 

我们记L为待求解的原始布局矩阵。A(i,j)表示按下第i行第j列的按钮时的作用范围矩阵。在上述例子中, 
L= 
0 1 0 
1 1 0 
0 1 1 

A(1,1)= 
1 1 0 
1 0 0 
0 0 0 

A(2,2)= 
0 1 0 
1 1 1 
0 1 0 

假设x(i,j)表示:想要使得L回到全灭状态,第i行第j列的按钮是否需要按下。0表示不按,1表示按下。那么,这个游戏就转化为如下方程的求解: 
L + x(1,1)*A(1,1) + x(1,2)*A(1,2) + x(1,3)*A(1,3) + x(2,1)*A(2,1) + ... + x(3,3)*A(3,3) = 0 

其中x(i,j)是未知数。方程右边的0表示零矩阵,表示全灭的状态。直观的理解就是:原来的L状态,经过了若干个A(i,j)的变换,最终变成0:全灭状态。 
由于是0、1矩阵,上述方程也可以写成: 
x(1,1)*A(1,1) + x(1,2)*A(1,2) + x(1,3)*A(1,3) + x(2,1)*A(2,1) + ... + x(3,3)*A(3,3) = L 

这是一个矩阵方程。两个矩阵相等,充要条件是矩阵中每个元素都相等。将上述方程展开,便转化成了一个9元1次方程组: 

简单地记做:AA * XX = LL 

这个方程有唯一解: 
x(1,1) x(1,2) x(1,3) 
x(2,1) x(2,2) x(2,3) 
x(3,1) x(3,2) x(3,3) 

1 1 1 
0 0 0 
0 0 1 

也就是说,按下第一行的3个按钮,和右下角的按钮,就

能使L状态变成全灭状态。 
对于固定行列的阵列来说,AA矩阵也是确定的。是否存在解,解是否唯一,只与AA矩阵有关。对于唯一解的情形,只要将LL乘以AA的逆矩阵即可。具体求AA的逆矩阵的方法,可以用高斯消元法。 

由于是0、1矩阵,上述方程也可以写成:

将1式两边同时加上一个L矩阵就可以变成
x(1,1)*A(1,1) + x(1,2)*A(1,2) + x(1,3)*A(1,3) + x(2,1)*A(2,1) + ... + x(3,3)*A(3,3) = L

A(1,1)把矩阵 转化为一个列向量,L也转化为一个列向量,

将sigma xi*Ai=Li 对应位置的值相等就可以建立方程组了

X1*A(1,1)1+X2*A(1,2)1+X3*A(1,3)1+…………X30*A(30,30)1=L1;    mod 2

X1*A(1,1)2+X2*A(1,2)2+X3*A(1,3)2+…………X30*A(30,30)2=L2;    mod 2

X1*A(1,1)3+X2*A(1,2)3+X3*A(1,3)3+…………X30*A(30,30)3=L3    mod 2

…….

…….

…….

X1*A(1,1)30+X2*A(1,2)30+X3*A(1,3)30+…………X30*A(30,30)30=L30; mod 2

其中A(i,j)k 表示列向量A中第K个元素

这里的*表示点乘,Xi取(1,0) +表示模2加法,所以在高斯消元的时候可以用^异或运算


1个开关最多控制5个灯,在构造的矩阵中,a[i][j]=1表示第i个开关可以影响到j号灯




#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;const int N=31;
int a[N][N];  //系数矩阵
int ans[N];/*
解异或方程可以套用高斯消元法,只须将原来的加减操作替换成异或操作就可以
两个方程的左边异或之后,它们的公共项就没有了。
*/void Debug ()
{for (int i=0;i<N-1;i++)for (int j=0;j<N-1;j++)printf (j==N-2?"%d\n":"%d ",a[i][j]);
}void Gauss ()
{int i,j,k;for (k=0;k<30;k++){i=k;for (;i<30;i++)//对于k=0..N-1,找到一个M[i][k]不为0的行iif (a[i][k]!=0)break;for (j=0;j<=30;j++)  //把找到的第i行与第k行交换swap (a[k][j],a[i][j]);
/*用第k行去异或下面所有M[i][j]不为0的行i,消去它们的第k个系数,这样就将原矩阵化成了上三角矩阵
最后一行只有一个未知数,这个未知数就已经求出来了,
用它跟上面所有含有这个未知数的方程异或,就消去了所有的着个未知数,
此时倒数第二行也只有一个未知数,它就被求出来了,用这样的方法可以自下而上求出所有未知数。
*/for (i=0;i<30;i++)if (k!=i && a[i][k])for (j=0;j<=30;j++)   // <= a[i][j]=a[k][j]^a[i][j];}for (i=0;i<30;i++)ans[i]=a[i][30];
}int main ()
{  
#ifdef ONLINE_JUDGE
#elsefreopen("read.txt","r",stdin);
#endifint T,i;scanf("%d",&T);for (int Cas=1;Cas<=T;Cas++){memset(a,0,sizeof(a));memset(ans,0,sizeof(ans));for (i=0;i<30;i++){scanf("%d",&a[i][30]);ans[i]=0;}for (i=0;i<30;i++){a[i][i]=1;if (i%6!=0) a[i-1][i]=1; //if (i%6!=5) a[i+1][i]=1;if (i>5) a[i-6][i]=1;if (i<24) a[i+6][i]=1;}
//		Debug();Gauss();printf ("PUZZLE #%d\n",Cas);for (i=0;i<30;i++)printf (i%6==5?"%d\n":"%d ",ans[i]);}return 0;
}


这篇关于poj 1222 EXTENDED LIGHTS OUT (高斯消元解异或方程组 开关问题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1102439

相关文章

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁

MySQ中出现幻读问题的解决过程

《MySQ中出现幻读问题的解决过程》文章解析MySQLInnoDB通过MVCC与间隙锁机制在可重复读隔离级别下解决幻读,确保事务一致性,同时指出性能影响及乐观锁等替代方案,帮助开发者优化数据库应用... 目录一、幻读的准确定义与核心特征幻读 vs 不可重复读二、mysql隔离级别深度解析各隔离级别的实现差异

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

Linux部署中的文件大小写问题的解决方案

《Linux部署中的文件大小写问题的解决方案》在本地开发环境(Windows/macOS)一切正常,但部署到Linux服务器后出现模块加载错误,核心原因是Linux文件系统严格区分大小写,所以本文给大... 目录问题背景解决方案配置要求问题背景在本地开发环境(Windows/MACOS)一切正常,但部署到