文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《考虑电-证-碳机制协同的绿...工业园区分布式优化运行策略》

本文主要是介绍文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《考虑电-证-碳机制协同的绿...工业园区分布式优化运行策略》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇文章的核心内容是关于在实现“碳达峰·碳中和”目标的背景下,针对绿电工业园区提出的一套考虑电-证-碳机制协同的分布式优化运行策略。以下是文章的主要内容概述:

  1. 研究背景:在“碳达峰·碳中和”目标的驱动下,工业园区作为电力系统的重要组成部分,需要实现绿色转型和低碳化发展。

  2. 研究目的:提出一种考虑电-证-碳机制协同的绿电工业园区动态定价与能量管理策略,以促进可再生能源的消纳和实现低碳化发展。

  3. 策略框架:建立了“一主多从”能量管理框架,包括园区运营商与多类型工业用户之间的利益交互关系。

  4. 双层博弈模型

    • 上层模型:优化运营商的动态定价策略,考虑绿证交易和碳交易机制的联动。
    • 下层模型:优化负荷能量管理策略,充分利用用户间的差异化特征。
  5. 求解算法:提出基于改进的交替方向乘子法(VPP-ADMM)的高效分层迭代求解算法,用以解决双层博弈模型。

  6. 算例研究:通过典型系统算例,验证了所提策略的有效性,包括运营商和用户的经济效益分析、差异性定价策略结果分析、储能资源共享效益分析以及绿电消纳和碳减排效果分析。

  7. 研究结论

    • 建立的模型和策略能够实现园区运营商和用户整体利益的提升。
    • 考虑电-证-碳机制的协同作用,可进一步促进绿电消纳和低碳化发展。
    • 差异性电价机制和共享储能的规模化效应,提高了园区能量管理的灵活性与整体效益。
  8. 关键词:工业园区、电-证-碳机制协同、差异性工业负荷、绿电园区、共享储能。

  9. 项目支持:研究得到国网河北省电力有限公司石家庄供电分公司项目的支持。

这篇文章为绿电工业园区在实现“双碳”目标过程中的优化运行提供了一种新的思路和方法,通过合理的电-证-碳机制协同和能量管理,促进了工业园区的绿色低碳发展。

根据文章的摘要和描述,复现仿真的主要思路可以概括为以下几个步骤:

  1. 系统结构和参数设置:定义工业园区的能源结构,包括清洁能源供应基地、差异性工业用户和共享储能电站。设置风光出力预测、负荷需求、燃气轮机参数、绿证和碳交易市场价格等。

  2. 建立双层博弈模型

    • 上层模型:以园区运营商为目标,优化动态定价策略。
    • 下层模型:以工业用户为目标,优化能量管理策略。
  3. 算法实现:实现基于改进的交替方向乘子法(VPP-ADMM)的迭代求解算法,用于求解双层博弈模型。

  4. 数据预处理:对输入数据进行预处理,包括风光出力、负荷需求等,以适应模型的需要。

  5. 仿真运行:运行仿真模型,记录运营商和用户的优化结果。

  6. 结果分析:分析仿真结果,包括经济效益、绿电消纳、碳排放等。

以下是使用Python语言表示的简化版仿真程序框架:

# 导入所需的库
import numpy as np
from scipy.optimize import minimize# 定义参数和变量
# 此处应包括风光预测出力、负荷需求、燃气轮机参数等
# 例如:
# wind_power = np.array([...])
# solar_power = np.array([...])
# load_demand = np.array([...])# 定义上层模型目标函数
def objective_upper_model(pricing_strategy):# 根据文章中的公式计算运营商收益# 此处应包括购电成本、发电成本、绿证交易成本等return total_cost# 定义下层模型目标函数
def objective_lower_model(user_strategy, pricing_strategy):# 根据文章中的公式计算用户成本# 此处应包括购电成本、负荷调整成本、储能使用成本等return user_total_cost# 定义约束条件
def constraints(user_strategy):# 包括储能约束、功率平衡约束等return constraints_list# 定义VPP-ADMM算法
def vpp_admm(pricing_strategy, user_strategies):# 初始化拉格朗日乘子和惩罚参数# 进行迭代求解# 更新拉格朗日乘子和惩罚参数return updated_pricing_strategy, updated_user_strategies# 主函数
def main():# 参数初始化# 初始化风光出力、负荷需求等# 双层博弈模型求解for iteration in range(max_iterations):pricing_strategy = ...  # 根据实际情况初始化或更新user_strategies = ...  # 初始化所有用户策略# 求解上层模型upper_result = minimize(objective_upper_model,pricing_strategy,constraints=...,method='SLSQP')# 更新运营商定价策略pricing_strategy = upper_result.x# 求解下层模型(用户能量管理策略)for user_index, user_strategy in enumerate(user_strategies):lower_result = minimize(objective_lower_model,user_strategy,args=(pricing_strategy,),constraints=constraints,method='SLSQP')user_strategies[user_index] = lower_result.x# 调用VPP-ADMM算法更新策略pricing_strategy, user_strategies = vpp_admm(pricing_strategy, user_strategies)# 检查收敛条件if check_convergence(pricing_strategy, user_strategies):break# 输出结果print("运营商收益:", objective_upper_model(pricing_strategy))for index, user_strategy in enumerate(user_strategies):print(f"用户 {index} 成本:", objective_lower_model(user_strategy, pricing_strategy))# 进行进一步的分析,如绿电消纳、碳排放等if __name__ == "__main__":main()

请注意,上述代码仅为程序框架,具体的函数实现需要根据文章中提出的模型和方法进行详细设计和编码。实际的程序实现会更加复杂,需要包括详细的参数设置、约束条件定义、目标函数计算以及收敛条件判断等。此外,还需要与具体的电力市场规则和操作实践相结合。

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇关于文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《考虑电-证-碳机制协同的绿...工业园区分布式优化运行策略》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1102278

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

基于Python实现自动化邮件发送系统的完整指南

《基于Python实现自动化邮件发送系统的完整指南》在现代软件开发和自动化流程中,邮件通知是一个常见且实用的功能,无论是用于发送报告、告警信息还是用户提醒,通过Python实现自动化的邮件发送功能都能... 目录一、前言:二、项目概述三、配置文件 `.env` 解析四、代码结构解析1. 导入模块2. 加载环

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Redis实现分布式锁全过程

《Redis实现分布式锁全过程》文章介绍Redis实现分布式锁的方法,包括使用SETNX和EXPIRE命令确保互斥性与防死锁,Redisson客户端提供的便捷接口,以及Redlock算法通过多节点共识... 目录Redis实现分布式锁1. 分布式锁的基本原理2. 使用 Redis 实现分布式锁2.1 获取锁