[Algorithm][综合训练][求最小公倍数][跳台阶][最长回文子串]详细讲解

本文主要是介绍[Algorithm][综合训练][求最小公倍数][跳台阶][最长回文子串]详细讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1.求最小公倍数
    • 1.题目链接
    • 2.算法原理详解 && 代码实现
  • 2.跳台阶
    • 1.题目链接
    • 2.算法原理详解 && 代码实现
  • 3.最长回文子串
    • 1.题目链接
    • 2.算法原理详解 && 代码实现


1.求最小公倍数

1.题目链接

  • 求最小公倍数

2.算法原理详解 && 代码实现

  • 最小公倍数:两数乘积 / 最大公因数
  • 最大公因数:辗转相除法
    • 原理GCD(a, b) == GCD(b, a % b)
    // 非递归版本
    int GCD(int a, int b)
    {while(b != 0){int tmp = b;b = a % b;a = tmp;}return a;
    }int GCD(int a, int b)
    {int tmp = 0;while(a % b){tmp = a % b;a = b;b = tmp;}return b;
    }// 递归版本
    int GCD(int a, int b)
    {if(b == 0){return a;}return GCD(b, a % b);
    }
    
  • 代码
    #include <iostream>
    using namespace std;int GCD(int a, int b)
    {if(b == 0){return a;}return GCD(b, a % b);
    }int main()
    {int a = 0, b = 0;cin >> a >> b;cout << (a * b / GCD(a, b)) << endl;return 0;
    }
    

2.跳台阶

1.题目链接

  • 跳台阶

2.算法原理详解 && 代码实现

  • 自己的版本
    #include <iostream>
    #include <vector>
    using namespace std;int main()
    {int n = 0;cin >> n;vector<int> dp(n + 1, 0);dp[1] = 1, dp[2] = 2;for(int i = 3; i <= n; i++){dp[i] = dp[i - 1] + dp[i - 2];}cout << dp[n] << endl;return 0;
    }
    
  • 优化版本:相较于自己的版本,多了滚动数组进行空间优化
    #include <iostream>
    using namespace std;int main()
    {int n = 0;cin >> n;int a = 1, b = 2, c = 2;for(int i = 3; i <= n; i++){c = a + b;a = b;b = c;}if(n == 0 || n == 1){cout << n << endl;}else{cout << c << endl;}return 0;
    }
    

3.最长回文子串

1.题目链接

  • 最长回文子串

2.算法原理详解 && 代码实现

  • 自己的版本:动态规划 --> 时间/空间复杂度均为 O ( N 2 ) O(N^2) O(N2)
    int getLongestPalindrome(string A) 
    {int n = A.size();vector<vector<bool>> dp(n, vector<bool>(n, false));int len = 1;for(int i = n - 1; i >= 0; i--){for(int j = 0; j < n; j++){if(A[i] == A[j]){// i + 1 < j -> 表示至少有三个字符或以上dp[i][j] = i + 1 < j ? dp[i + 1][j - 1] : true;if(dp[i][j] && j - i + 1 > len){len = j - i + 1;}}}}return len;
    }
    
  • 优化版本:中心扩展算法 --> 时间复杂度 O ( N 2 ) O(N^2) O(N2),空间复杂度 O ( 1 ) O(1) O(1)
    • 枚举中心位置的时候,要考虑回文串长度的奇偶性
    int getLongestPalindrome(string A) 
    {int n = A.size(), len = 1;for(int i = 1; i < n; i++) // 枚举每个中心点{// 当长度是奇数时int left = i - 1, right = i + 1;while(left >= 0 && right < n && A[left] == A[right]){left--;right++;}len = max(len, right - left - 1);// 当长度是偶数时left = i - 1, right = i;while(left >= 0 && right < n && A[left] == A[right]){left--;right++;}len = max(len, right - left - 1);}return len;
    }
    

这篇关于[Algorithm][综合训练][求最小公倍数][跳台阶][最长回文子串]详细讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1101946

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Java中HashMap的用法详细介绍

《Java中HashMap的用法详细介绍》JavaHashMap是一种高效的数据结构,用于存储键值对,它是基于哈希表实现的,提供快速的插入、删除和查找操作,:本文主要介绍Java中HashMap... 目录一.HashMap1.基本概念2.底层数据结构:3.HashCode和equals方法为什么重写Has

Java使用正则提取字符串中的内容的详细步骤

《Java使用正则提取字符串中的内容的详细步骤》:本文主要介绍Java中使用正则表达式提取字符串内容的方法,通过Pattern和Matcher类实现,涵盖编译正则、查找匹配、分组捕获、数字与邮箱提... 目录1. 基础流程2. 关键方法说明3. 常见场景示例场景1:提取所有数字场景2:提取邮箱地址4. 高级

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

Java实现TXT文件导入功能的详细步骤

《Java实现TXT文件导入功能的详细步骤》在实际开发中,很多应用场景需要将用户上传的TXT文件进行解析,并将文件中的数据导入到数据库或其他存储系统中,本文将演示如何用Java实现一个基本的TXT文件... 目录前言1. 项目需求分析2. 示例文件格式3. 实现步骤3.1. 准备数据库(假设使用 mysql