Groupings sets详解

2024-08-24 05:44
文章标签 详解 sets groupings

本文主要是介绍Groupings sets详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 概要
  • 使用方法介绍
  • 示例

概要

GROUPING SETS在SELECT语句中的使用,它扩展了GROUP BY的功能,允许一次性执行多种分组操作,提高了查询效率。hive,spark,presto中都有此函数。以下介绍以sparksql为例;

使用方法介绍

首先需要提醒一点的是,hql中和sparksql中虽然均有grouping sets函数,可是grouping__id顺序确是相反的,一般情况我们习惯了hql中保持一致,需要脚本中增加:set spark.grouping.sets.reference.hive=true;

基本使用,是在group by 维度值后,使用grouping sets ((a,b,c),(a,b),©)像这样;

SELECT a, b, SUM( c ) FROM tab1 GROUP BY a, b GROUPING SETS ( (a,b), a)
###等价于
SELECT a, b, SUM( c ) FROM tab1 GROUP BY a, b
UNION
SELECT a, null, SUM( c ) FROM tab1 GROUP BY a

示例

有这样一份数据,统计了不同维度下用户数和浏览次数,维度有日期(day),平台(platform)和频道(channel);

具体代码如下:

select day,platform,channel,sum(pv) as pv,sum(imei_num) as imei_num
from 
(SELECT  day,if((cast(grouping__id as int) & 1) = 0,'ALL',platform) as platform,if((cast(grouping__id as int) & 2) = 0,'ALL',channel) as channel,SUM(pv) as pv,imei,max(if(pv>0,1,0)) as imei_num
FROM tmp_read_pv
GROUP BY  platform, channel,day,imei
GROUPING SETS ( 
(platform,channel,imei,day),
(platform,imei,day),
(channel,imei,day),
(imei,day))) tt GROUP BY  platform, channel,day;

一般情况下,涉及到人数去重,我们习惯于嵌套两层,最里面一层加上imei维度,最外面再把imei去掉;

现在思考一个问题,如果我们维度比较多,比如有8个维度,里面还涉及到去重指标,我们该怎么做呢?如果直接使用grouping sets
再加上imei,共有9个维度,直接写需要 2 9 2^9 29行,如果直接用with cube,因为里面有imei数据量比较大,几乎跑不动。那该如何呢?

方法:多段使用grouping sets ,比如你有9个(加imei)维度,你可以第一次先group by 5个(加imei)维度,其他几个维度当做指标
,此时4个维度,都有all枚举值,第二次使用grouping sets ,group by 两个维度,再加上第一次的5个,剩下两个依然当做指标,grouping sets里面需要注意一下,这4个维度不用再增加ALL枚举值,此时这两个维度也有all枚举值,最后一次再新增两个维度,group by 两个维度,再加上前两次的7个维度,注意事项同上,此时最后两个维度也有ALL枚举值。在最后把imei维度去掉再聚合一层,就能得出最终结果;

这篇关于Groupings sets详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1101610

相关文章

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

SpringBoot整合mybatisPlus实现批量插入并获取ID详解

《SpringBoot整合mybatisPlus实现批量插入并获取ID详解》这篇文章主要为大家详细介绍了SpringBoot如何整合mybatisPlus实现批量插入并获取ID,文中的示例代码讲解详细... 目录【1】saveBATch(一万条数据总耗时:2478ms)【2】集合方式foreach(一万条数

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

一文详解Java异常处理你都了解哪些知识

《一文详解Java异常处理你都了解哪些知识》:本文主要介绍Java异常处理的相关资料,包括异常的分类、捕获和处理异常的语法、常见的异常类型以及自定义异常的实现,文中通过代码介绍的非常详细,需要的朋... 目录前言一、什么是异常二、异常的分类2.1 受检异常2.2 非受检异常三、异常处理的语法3.1 try-

Java中的@SneakyThrows注解用法详解

《Java中的@SneakyThrows注解用法详解》:本文主要介绍Java中的@SneakyThrows注解用法的相关资料,Lombok的@SneakyThrows注解简化了Java方法中的异常... 目录前言一、@SneakyThrows 简介1.1 什么是 Lombok?二、@SneakyThrows