Groupings sets详解

2024-08-24 05:44
文章标签 详解 sets groupings

本文主要是介绍Groupings sets详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 概要
  • 使用方法介绍
  • 示例

概要

GROUPING SETS在SELECT语句中的使用,它扩展了GROUP BY的功能,允许一次性执行多种分组操作,提高了查询效率。hive,spark,presto中都有此函数。以下介绍以sparksql为例;

使用方法介绍

首先需要提醒一点的是,hql中和sparksql中虽然均有grouping sets函数,可是grouping__id顺序确是相反的,一般情况我们习惯了hql中保持一致,需要脚本中增加:set spark.grouping.sets.reference.hive=true;

基本使用,是在group by 维度值后,使用grouping sets ((a,b,c),(a,b),©)像这样;

SELECT a, b, SUM( c ) FROM tab1 GROUP BY a, b GROUPING SETS ( (a,b), a)
###等价于
SELECT a, b, SUM( c ) FROM tab1 GROUP BY a, b
UNION
SELECT a, null, SUM( c ) FROM tab1 GROUP BY a

示例

有这样一份数据,统计了不同维度下用户数和浏览次数,维度有日期(day),平台(platform)和频道(channel);

具体代码如下:

select day,platform,channel,sum(pv) as pv,sum(imei_num) as imei_num
from 
(SELECT  day,if((cast(grouping__id as int) & 1) = 0,'ALL',platform) as platform,if((cast(grouping__id as int) & 2) = 0,'ALL',channel) as channel,SUM(pv) as pv,imei,max(if(pv>0,1,0)) as imei_num
FROM tmp_read_pv
GROUP BY  platform, channel,day,imei
GROUPING SETS ( 
(platform,channel,imei,day),
(platform,imei,day),
(channel,imei,day),
(imei,day))) tt GROUP BY  platform, channel,day;

一般情况下,涉及到人数去重,我们习惯于嵌套两层,最里面一层加上imei维度,最外面再把imei去掉;

现在思考一个问题,如果我们维度比较多,比如有8个维度,里面还涉及到去重指标,我们该怎么做呢?如果直接使用grouping sets
再加上imei,共有9个维度,直接写需要 2 9 2^9 29行,如果直接用with cube,因为里面有imei数据量比较大,几乎跑不动。那该如何呢?

方法:多段使用grouping sets ,比如你有9个(加imei)维度,你可以第一次先group by 5个(加imei)维度,其他几个维度当做指标
,此时4个维度,都有all枚举值,第二次使用grouping sets ,group by 两个维度,再加上第一次的5个,剩下两个依然当做指标,grouping sets里面需要注意一下,这4个维度不用再增加ALL枚举值,此时这两个维度也有all枚举值,最后一次再新增两个维度,group by 两个维度,再加上前两次的7个维度,注意事项同上,此时最后两个维度也有ALL枚举值。在最后把imei维度去掉再聚合一层,就能得出最终结果;

这篇关于Groupings sets详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1101610

相关文章

spring中的ImportSelector接口示例详解

《spring中的ImportSelector接口示例详解》Spring的ImportSelector接口用于动态选择配置类,实现条件化和模块化配置,关键方法selectImports根据注解信息返回... 目录一、核心作用二、关键方法三、扩展功能四、使用示例五、工作原理六、应用场景七、自定义实现Impor

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

CSS3中的字体及相关属性详解

《CSS3中的字体及相关属性详解》:本文主要介绍了CSS3中的字体及相关属性,详细内容请阅读本文,希望能对你有所帮助... 字体网页字体的三个来源:用户机器上安装的字体,放心使用。保存在第三方网站上的字体,例如Typekit和Google,可以link标签链接到你的页面上。保存在你自己Web服务器上的字