TIM输出比较之PWM驱动直流电机应用案例

2024-08-24 05:20

本文主要是介绍TIM输出比较之PWM驱动直流电机应用案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、应用案例演示
  • 二、电路接线图
  • 三、应用案例代码
  • 四、应用案例分析
    • 4.1 初始化PWM模块
      • 4.1.1 RCC开启时钟
      • 4.1.2 配置时基单元
      • 4.1.3 配置输出比较单元
      • 4.1.4 配置GPIO
      • 4.1.5 运行控制
    • 4.2 PWM输出模块
    • 4.3 电机模块
      • 4.3.1 Motor初始化模块
      • 4.3.2 电机调速模块
    • 4.4 主程序


前言

提示:本文主要用作在学习江科大自化协STM32入门教程后做的归纳总结笔记,旨在学习记录,如有侵权请联系作者
本案例实现了一个利用输出占空比可调的PWM信号来驱动直流电机的功能。每按一次按键电机按照增量或减量的速度正反转动,比如按一下,OLED上显示当前的速度值为+20,再按一下,+40,以此类推。其中正转显示为+,反转显示为-。


一、应用案例演示

TIM输出比较之PWM驱动直流电机

二、电路接线图

这里红色的模块是TB6612电机驱动模块,它的第一个引脚VM为电机电源,同样的我们可以把它接到STLINK的5V引脚上。第二个VCC逻辑电源,接面包板3.3V正极。第三个GND电源负极,接面包板的负极。之后AO1、AO2电机输出端,接电机的两根线。STBY待机控制脚,不需要待机,直接接逻辑电源3.3V正极。剩下的三个是控制引脚,AIN1和AIN2是方向控制,任意接两个GPIO就行了,这里我接的是PA4和PA5两个引脚。PWMA是速度控制,需要接PWM的输出脚,这里我接的是PA2这个引脚。最后在PB1接了一个按键用于控制电机。
在这里插入图片描述
在这里插入图片描述

三、应用案例代码

PWM.h文件:

#ifndef __PWM_H
#define __PWM_Hvoid PWM_Init(void);
void PWM_SetCompare3(uint16_t Compare);#endif

PWM.c实现文件:

#include "stm32f10x.h"                  // Device headervoid PWM_Init(void)
{RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);TIM_InternalClockConfig(TIM2);TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;		//ARRTIM_TimeBaseInitStructure.TIM_Prescaler = 36 - 1;		//PSCTIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);TIM_OCInitTypeDef TIM_OCInitStructure;TIM_OCStructInit(&TIM_OCInitStructure);TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;TIM_OCInitStructure.TIM_Pulse = 0;		//CCRTIM_OC3Init(TIM2, &TIM_OCInitStructure);TIM_Cmd(TIM2, ENABLE);
}void PWM_SetCompare3(uint16_t Compare)
{TIM_SetCompare3(TIM2, Compare);
}

电机头文件Motor.h:

#ifndef __MOTOR_H
#define __MOTOR_Hvoid Motor_Init(void);
void Motor_SetSpeed(int8_t Speed);#endif

电机实现文件Motor.c:

#include "stm32f10x.h"                  // Device header
#include "PWM.h"void Motor_Init(void)
{RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);PWM_Init();
}void Motor_SetSpeed(int8_t Speed)
{if (Speed >= 0){GPIO_SetBits(GPIOA, GPIO_Pin_4);GPIO_ResetBits(GPIOA, GPIO_Pin_5);PWM_SetCompare3(Speed);}else{GPIO_ResetBits(GPIOA, GPIO_Pin_4);GPIO_SetBits(GPIOA, GPIO_Pin_5);PWM_SetCompare3(-Speed);}
}

主程序main.c:

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Motor.h"
#include "Key.h"uint8_t KeyNum;
int8_t Speed;int main(void)
{OLED_Init();Motor_Init();Key_Init();OLED_ShowString(1, 1, "Speed:");while (1){KeyNum = Key_GetNum();if (KeyNum == 1){Speed += 20;if (Speed > 100){Speed = -100;}}Motor_SetSpeed(Speed);OLED_ShowSignedNum(1, 7, Speed, 3);}
}

完整工程:TIM输出比较之PWM驱动直流电机应用案例

四、应用案例分析

整体思路与LED呼吸灯那一章节基本是一致的,在那一章里已经讲得非常详细了,这里就不再累述了,不懂的可以回过头去看一看。

文章传送门在此:TIM输出比较之PWM驱动LED呼吸灯应用案例

在这里插入图片描述

这里需要注意的是,本案例换了一个GPIO口,所以对应的定时器的通道也要更换。如下表所示,可以看到PA2对应的是TIM2的CH3通道。

在这里插入图片描述

4.1 初始化PWM模块

4.1.1 RCC开启时钟

RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);

4.1.2 配置时基单元

TIM_InternalClockConfig(TIM2);TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;		//ARR
TIM_TimeBaseInitStructure.TIM_Prescaler = 36 - 1;		//PSC
TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);

TIM_InternalClockConfig(TIM2);//选择时基单元的时钟源,选择内部时钟。若不调用这个函数,系统上电后默认也是内部时钟。

计算公式如下:
PWM频率:Freq = CK_PSC / (PSC + 1) / (ARR + 1)
PWM占空比:Duty = CCR / (ARR + 1)
PWM分辨率:Reso = 1 / (ARR + 1)
换算公式:1 MHz = 1,000 KHz = 1,000,000 Hz

假设我要输出一个频率为1KHz,占空比为50%,分辨率为1%的PWM波形,时钟源选择内部时钟,也就是说CK_PSC=72MHz。

代入公式计算可得:
Freq =1000 = 72000000 / 720 / 100
那么可以推算出PSC为719,ARR为99
同样的道理,Duty = 50% = CCR / 100,推算出CCR为50。
同样也可以推算出周期 T = 1 / 1000 = 0.001秒,也就是1毫秒。(频率是周期的倒数 f = 1 / T)

输出频率为1KHz,占空比为50%(CCR设置为50),分辨率为1%(受占空比变化影响)的PWM波形代码如下:

TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;		//ARR
TIM_TimeBaseInitStructure.TIM_Prescaler = 720- 1;		//PSC
TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);

那如果我们设置频率为1KHz的话就会出现一个问题,就是这个电机会发出蜂鸣器的响声,在堵转的时候很明显。因为电机里面也是线圈和磁铁,所以在PWM的驱动下会发出蜂鸣器的声音,这是正常现象。那有什么办法可以避免呢?研究表明,人耳能听到的范围是20Hz到20KHz,那这样的话我们可以把频率调到人耳能接受的范围就可以了。

加大频率我们可以通过减小预分频器来完成,这样不会影响占空比。所以我们给这个预分频器去掉一个0,那就是10KHz了。再减半为36,那就是20KHz了。

那么输出频率为20KHz的PWM波形代码如下:

TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;		//ARR
TIM_TimeBaseInitStructure.TIM_Prescaler = 36 - 1;		//PSC
TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);

4.1.3 配置输出比较单元

TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_OCStructInit(&TIM_OCInitStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 0;		//CCR
TIM_OC3Init(TIM2, &TIM_OCInitStructure);

4.1.4 配置GPIO

GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);

4.1.5 运行控制

TIM_Cmd(TIM2, ENABLE);

4.2 PWM输出模块

void PWM_SetCompare3(uint16_t Compare)
{TIM_SetCompare3(TIM2, Compare);
}

4.3 电机模块

4.3.1 Motor初始化模块

void Motor_Init(void)
{RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);PWM_Init();
}

电机模块的初始化包括两个部分,分别是控制电机正反转的两个GPIO(PA4和PA5)以及PWM模块。

4.3.2 电机调速模块

void Motor_SetSpeed(int8_t Speed)
{if (Speed >= 0){GPIO_SetBits(GPIOA, GPIO_Pin_4);GPIO_ResetBits(GPIOA, GPIO_Pin_5);PWM_SetCompare3(Speed);}else{GPIO_ResetBits(GPIOA, GPIO_Pin_4);GPIO_SetBits(GPIOA, GPIO_Pin_5);PWM_SetCompare3(-Speed);}
}

GPIO_SetBits()和GPIO_ResetBits()用于设置电机正反转,PWM_SetCompare3函数用于设置电机速度。

在这里插入图片描述

4.4 主程序

主程序在while(1)主循环里通过获取按键按下的状态对电机进行调速,当速度超过100的时候反方向运行。

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Motor.h"
#include "Key.h"uint8_t KeyNum;
int8_t Speed;int main(void)
{OLED_Init();Motor_Init();Key_Init();OLED_ShowString(1, 1, "Speed:");while (1){KeyNum = Key_GetNum();if (KeyNum == 1){Speed += 20;if (Speed > 100){Speed = -100;}}Motor_SetSpeed(Speed);OLED_ShowSignedNum(1, 7, Speed, 3);}
}

这篇关于TIM输出比较之PWM驱动直流电机应用案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1101563

相关文章

六个案例搞懂mysql间隙锁

《六个案例搞懂mysql间隙锁》MySQL中的间隙是指索引中两个索引键之间的空间,间隙锁用于防止范围查询期间的幻读,本文主要介绍了六个案例搞懂mysql间隙锁,具有一定的参考价值,感兴趣的可以了解一下... 目录概念解释间隙锁详解间隙锁触发条件间隙锁加锁规则案例演示案例一:唯一索引等值锁定存在的数据案例二:

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

MySQL 表的内外连接案例详解

《MySQL表的内外连接案例详解》本文给大家介绍MySQL表的内外连接,结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录表的内外连接(重点)内连接外连接表的内外连接(重点)内连接内连接实际上就是利用where子句对两种表形成的笛卡儿积进行筛选,我

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

Java Stream.reduce()方法操作实际案例讲解

《JavaStream.reduce()方法操作实际案例讲解》reduce是JavaStreamAPI中的一个核心操作,用于将流中的元素组合起来产生单个结果,:本文主要介绍JavaStream.... 目录一、reduce的基本概念1. 什么是reduce操作2. reduce方法的三种形式二、reduce

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参

Spring Boot中的YML配置列表及应用小结

《SpringBoot中的YML配置列表及应用小结》在SpringBoot中使用YAML进行列表的配置不仅简洁明了,还能提高代码的可读性和可维护性,:本文主要介绍SpringBoot中的YML配... 目录YAML列表的基础语法在Spring Boot中的应用从YAML读取列表列表中的复杂对象其他注意事项总

Spring Boot 整合 Redis 实现数据缓存案例详解

《SpringBoot整合Redis实现数据缓存案例详解》Springboot缓存,默认使用的是ConcurrentMap的方式来实现的,然而我们在项目中并不会这么使用,本文介绍SpringB... 目录1.添加 Maven 依赖2.配置Redis属性3.创建 redisCacheManager4.使用Sp

电脑系统Hosts文件原理和应用分享

《电脑系统Hosts文件原理和应用分享》Hosts是一个没有扩展名的系统文件,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的IP地址,一旦找到,系统会立即打开对应... Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应

springboot项目redis缓存异常实战案例详解(提供解决方案)

《springboot项目redis缓存异常实战案例详解(提供解决方案)》redis基本上是高并发场景上会用到的一个高性能的key-value数据库,属于nosql类型,一般用作于缓存,一般是结合数据... 目录缓存异常实践案例缓存穿透问题缓存击穿问题(其中也解决了穿透问题)完整代码缓存异常实践案例Red