机器学习:opencv图像识别--图片专项

2024-08-24 02:28

本文主要是介绍机器学习:opencv图像识别--图片专项,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

一、读取图片

1.安装opencv库

2.读取彩色图片

3.读取灰度图

二、RGB

1.RGB的概念

2.颜色通道:

3.图像表示

4.代码实现单通道图像

三、ROI

1.代码实现

四、图片打码

五、图片组合

六、图片缩放

总结


前言

        OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉库,用于图像处理、视频分析、机器学习等任务。它提供了大量的函数和工具,帮助开发者进行图像处理和计算机视觉应用。

 

一、读取图片

1.安装opencv库

最好安装3.4及之前的版本,新版本可能会有版权问题

 

2.读取彩色图片

代码:

import cv2"--------------------读取图片-------------------"
a = cv2.imread('suda.jpg')
cv2.imshow('suda', a)  # 显示图片 第一个参数,给显示框命名
b = cv2.waitKey(0)    # 显示时间 单位毫秒  0一直显示 键盘任意按键结束 返回按键的ascll码值
print(b)
cv2.destroyAllWindows()   # 关闭所有窗口print("图片的形状", a.shape)
print("图像数据类型", a.dtype)
print("图像大小", a.size)

输出:

图片的形状 (940, 940, 3)
图像数据类型 uint8
图像大小 2650800

 

3.读取灰度图

代码:

import cv2"--------------------读取灰度图------------------"
a = cv2.imread('suda.jpg', cv2.IMREAD_GRAYSCALE)  # 读取的时候转换成灰度图进行读取 IMREAD可以用0替换
# img = cv2.imread('suda.jpg')
# a = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.imshow('suda', a)  # 显示图片 第一个参数,给显示框命名
b = cv2.waitKey(0)  # 显示时间 单位毫秒  0一直显示 键盘任意按键结束 返回按键的ascll码值
print(b)
cv2.destroyAllWindows()  # 关闭所有窗口print("图片的形状", a.shape)
print("图像数据类型", a.dtype)
print("图像大小", a.size)'''保存图片'''
cv2.imwrite('suda_GRAY.jpg', a)

输出:

  • 可以看到图片的形状变成了一维
  • 图像大小变成了彩色图片的三分之一
图片的形状 (940, 940)
图像数据类型 uint8
图像大小 883600

 

二、RGB

1.RGB的概念

        RGB 是一种颜色表示模型,用于图像和视频处理中。RGB 代表红色(Red)、绿色(Green)和蓝色(Blue)三个颜色通道,通过调整这三种颜色的强度来生成其他颜色。每种颜色通道的强度通常用一个整数值表示,范围从0到255。

 

2.颜色通道

  • 红色通道(R):控制红色的强度。
  • 绿色通道(G):控制绿色的强度。
  • 蓝色通道(B):控制蓝色的强度。

 

3.图像表示

  • 在数字图像处理中,每个像素的颜色通常由三个数值表示,这三个数值分别对应于红色、绿色和蓝色通道的强度。
  • 例如,一个像素的颜色为(128,64,32)表示红色强度为128,绿色强度为64,蓝色强度为32。

 

4.代码实现单通道图像

  • 为什么这样读取单色通道,因为每个图像是由三张不同的单色通道的图叠加而成的
  • 直接显示单色通道图会呈现类似灰度图的样子,因为此时默认另外两个通道的值为255,会有很大影响
  • 当把另外两个通道的值变成0时,即可输出正常的单色图像
  • 最后还有使用cv2.merge()函数实现多通道合并
import cv2# 读取图像
a = cv2.imread('suda.jpg')# 提取颜色通道
# b = a[:, :, 0]  # 蓝色通道
# g = a[:, :, 1]  # 绿色
# r = a[:, :,2]  # 红色
# 分离通道
b, g, r = cv2.split(a)# 显示单通道的图像  灰度
cv2.imshow('result', b)  # 显示为灰度图的样子 因为取单通道时其他通道默认值为255 调成0才显示单颜色
cv2.waitKey(10000)
cv2.destroyAllWindows()# 显示单通道图像  单色
a_new = a.copy()
a_new[:, :, 1] = 0  # 将绿色通道设置为0
a_new[:, :, 2] = 0  # 将红色通道设置为0
cv2.imshow('result', a_new)  # 显示为单色
cv2.waitKey(10000)
cv2.destroyAllWindows()'''合并颜色通道'''
img = cv2.merge((b, g, r))  # 图片通道数只能是1,3,4
cv2.imshow('result', img)  # 显示为单色
cv2.waitKey(10000)
cv2.destroyAllWindows()
  • 未将另外两个通道的值设置为0时,默认255的效果:

  • 将另外两个通道的值设置为0时的效果:

  • 合并颜色通道的效果:

 

 

三、ROI

        "ROI" 在图像处理中代表“感兴趣区域”(Region of Interest)。它是图像中的一个特定区域,人为取出图像中的某个区域。

1.代码实现

  • 代码很简单
  • 实质是取图片数组中的某个部分,形成新的显示
import cv2a = cv2.imread("suda.jpg")
b = a[100:600, 100:600]
cv2.imshow('pic', a)
cv2.imshow('sec', b)
cv2.waitKey(10000)
cv2.destroyAllWindows()

 

四、图片打码

  • 实质是用随机像素组成的矩阵替换图片中某一块矩阵的像素
import cv2
import numpy as np# 图片打码
a = cv2.imread('suda.jpg')
a[100:200, 200:300] = np.random.randint(0, 256, (100, 100, 3))
"""
两边矩阵大小须一致
np.random.randint(0, 256, (100, 100, 3)) 生成一个形状为 (100, 100, 3) 的随机整数数组
这些随机整数在 [0, 256) 范围内(即从0到255),通常用于表示RGB图像的像素值
(100, 100, 3) 表示生成一个100行100列的像素区域,每个像素有三个通道(R、G、B)
"""
cv2.imshow('pic', a)
cv2.waitKey(10000)
cv2.destroyAllWindows()

输出:

 

五、图片组合

  • 本质是用一张图片的某一部分取替换另一张图片的某一部分
# 图片组合
a = cv2.imread('suda.jpg')
b = cv2.imread('figure_0_9.png')
a[200:300, 300:500] = b[300:400, 500:700]  # 将a的一部分替换为b的一部分 两边矩阵大小须一致
cv2.imshow('pic', a)
cv2.imshow('sec', b)
cv2.waitKey(10000)
cv2.destroyAllWindows()

输出:

 

六、图片缩放

  • 有两种方法:
    • 一种是直接设定新图片的宽高
    • 另一种是使用resize设定新图片与原图片的比例
# 图片缩放
""" 
cv2.resize
src:要调整大小的输入图像,可以是numpy数组、PIL图像或其他类型
dsize:输出图像的大小,可以是一个元组,例如(宽,高),或者使用整数标量来缩放原始图像。如果dsize为None,则根据scalefx和scalefy缩放原始图像
fx:沿x轴的缩放倍数
fy:沿y轴的缩放倍数
"""
a = cv2.imread('suda.jpg')
a_new = cv2.resize(a, (200, 600))  # 设置宽、高
# a_new = cv2.resize(a, dsize=None, fx=0.5, fy=0.5)
print(a.shape)  # 高、宽、通道数
cv2.imshow('pic', a)
cv2.imshow('sec', a_new)
cv2.waitKey(10000)
cv2.destroyAllWindows()

输出:

  • 这是设置宽高

  • 这是设置比例

 

总结

        opencv库的功能十分强大,这只是其中一部分,后续还会介绍其他的功能

这篇关于机器学习:opencv图像识别--图片专项的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1101188

相关文章

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Python实现无损放大图片功能

《使用Python实现无损放大图片功能》本文介绍了如何使用Python的Pillow库进行无损图片放大,区分了JPEG和PNG格式在放大过程中的特点,并给出了示例代码,JPEG格式可能受压缩影响,需先... 目录一、什么是无损放大?二、实现方法步骤1:读取图片步骤2:无损放大图片步骤3:保存图片三、示php

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测