优化Kubernetes横向扩缩HPA

2024-08-23 20:58

本文主要是介绍优化Kubernetes横向扩缩HPA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pod水平自动扩缩(Horizontal Pod Autoscaler, 简称HPA)可以基于 CPU/MEM 利用率自动扩缩Deployment、StatefulSet 中的 Pod 数量,同时也可以基于其他应程序提供的自定义度量指标来执行自动扩缩。默认HPA可以满足一些简单场景,对于生产环境并不一定适合,本文主要分析HPA的不足与优化方式。

HPA Resource类型不足

默认HPA提供了Resource类型,通过CPU/MEM使用率指标(由metrics-server提供原始指标)来扩缩应用。

使用率计算方式

在Resource类型中,使用率计算是通过request而不是limit,源码如下:

// 获取Pod resource request
func calculatePodRequests(pods []*v1.Pod, resource v1.ResourceName) (map[string]int64, error) {requests := make(map[string]int64, len(pods))for _, pod := range pods {podSum := int64(0)for _, container := range pod.Spec.Containers {if containerRequest, ok := container.Resources.Requests[resource]; ok {podSum += containerRequest.MilliValue()} else {return nil, fmt.Errorf("missing request for %s", resource)}}requests[pod.Name] = podSum}return requests, nil
}
// 计算使用率
func GetResourceUtilizationRatio(metrics PodMetricsInfo, requests map[string]int64, targetUtilization int32) (utilizationRatio float64, currentUtilization int32, rawAverageValue int64, err error) {metricsTotal := int64(0)requestsTotal := int64(0)numEntries := 0for podName, metric := range metrics {request, hasRequest := requests[podName]if !hasRequest {// we check for missing requests elsewhere, so assuming missing requests == extraneous metricscontinue}metricsTotal += metric.ValuerequestsTotal += requestnumEntries++}currentUtilization = int32((metricsTotal * 100) / requestsTotal)return float64(currentUtilization) / float64(targetUtilization), currentUtilization, metricsTotal / int64(numEntries), nil
}

通常在Paas平台中会对资源进行超配,limit即用户请求资源,request即实际分配资源,如果按照request来计算使用率(会超过100%)是不符合预期的。相关issue见72811,目前还存在争论。可以修改源码,或者使用自定义指标来代替。

多容器Pod使用率问题

默认提供的Resource类型的HPA,通过上述方式计算资源使用率,核心方式如下:

metricsTotal = sum(pod.container.metricValue)
requestsTotal = sum(pod.container.Request)
currentUtilization = int32((metricsTotal * 100) / requestsTotal)

计算出所有container的资源使用量再比总的申请量,对于单容器Pod这没影响。但对于多容器Pod,比如Pod包含多个容器con1、con2(request都为1cpu),con1使用率10%,con2使用率100%,HPA目标使用率60%,按照目前方式得到使用率为55%不会进行扩容,但实际con2已经达到资源瓶颈,势必会影响服务质量。当前系统中,多容器Pod通常都是1个主容器与多个sidecar,依赖主容器的指标更合适点。

好在1.20版本中已经支持了ContainerResource可以配置基于某个容器的资源使用率来进行扩缩,如果是之前的版本建议使用自定义指标替换。

性能问题

单线程架构

默认的hpa-controller是单个Goroutine执行的,随着集群规模的增多,势必会成为性能瓶颈,目前默认hpa资源同步周期会15s,假设每个metric请求延时为100ms,当前架构只能支持150个HPA资源(保证在15s内同步一次)

func (a *HorizontalController) Run(stopCh <-chan struct{}) {// ...// start a single worker (we may wish to start more in the future)go wait.Until(a.worker, time.Second, stopCh)<-stopCh
}

可以通过调整worker数量来横向扩展,已提交PR。

调用链路

hpa controller中一次hpa资源同步,需要调用多次apiserver接口,主要链路如下

  1. 通过scaleForResourceMappings得到scale资源
  2. 调用computeReplicasForMetrics获取metrics value
  3. 调用Scales().Update更新计算出的副本数

尤其在获取metrics value时,需要先调用apiserver,apiserver调用metrics-server/custom-metrics-server,当集群内存在大量hpa时可能会对apiserver性能产生一定影响。

其他

对于自定义指标用户需要实现custom.metrics.k8s.ioexternal.metrics.k8s.io,目前已经有部分开源实现见custom-metrics-api。

另外,hpa核心的扩缩算法根据当前指标和期望指标来计算扩缩比例,并不适合所有场景,只使用线性增长的指标。

期望副本数 = ceil[当前副本数 * (当前指标 / 期望指标)]

watermarkpodautoscaler提供了更灵活的扩缩算法,比如平均值、水位线等,可以作为参考。

总结

Kubernetes提供原生的HPA只能满足一部分场景,如果要上生产环境,必须对其做一些优化,本文总结了当前HPA存在的不足,例如在性能、使用率计算方面,并提供了解决思路。

这篇关于优化Kubernetes横向扩缩HPA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100473

相关文章

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

SpringBoot利用树形结构优化查询速度

《SpringBoot利用树形结构优化查询速度》这篇文章主要为大家详细介绍了SpringBoot利用树形结构优化查询速度,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一个真实的性能灾难传统方案为什么这么慢N+1查询灾难性能测试数据对比核心解决方案:一次查询 + O(n)算法解决

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器