二维偏序——常见问题解答

2024-08-23 16:08

本文主要是介绍二维偏序——常见问题解答,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、定义

  • 对于每个点i,都可能有另外一些点的x、y坐标均小于等于点i的x、y坐标,这些点的数量即为点i的二维偏序值.
  • 在图1中,点A的二维偏序值为1,B的二维偏序值为2,点C的二维偏序值为0.
  • 图1
  • 在图2中,点A与点B的二维偏序值均为0.
  • 图2

二、具体过程

  • 很多地方都会直接告诉我们:按照第一维排序,再用树状数组处理第二维即可。但是最重要的并不是具体的运行步骤,而是这个方法里真正蕴含的算法设计的思想.
  • 为什么要按照第一维排序:对于每个点,显然只有它前面的点(x坐标小于等于该点)的数量有可能(换句话说,x坐标大于该点的那些点是绝对不可能被计入该点的二维偏序值的)被计入该点的二维偏序值.
  • 当然了,仅仅按照第一维排序是不能解决这一问题的,因为不能保证每个点前面的点的y坐标都小于等于这个点。换句话说,假设点i前面的某个点的y坐标大于点i的y坐标,那就不应当计入点i的二维偏序值.
  • 例如图3,该图中点A、B、C的二维偏序值均为0.
  • 图3

     

  • 为什么要使用树状数组:在二维偏序中,通过对每个点关于x坐标排序,我们得到了一个x轴坐标单调递增的点的序列。接下来要解决的问题,是怎么关于点i获取y坐标小于点i的点的数量。由于只有x坐标小于等于点i的点集需要被考虑(原因前面已经提到过,即只有x坐标小于等于点i的x坐标的点集有可能被计入点i的二维偏序值),
  • 我们可以从开头到末尾遍历已关于x轴排序每个点,每遍历到一个点,就将这个点的y坐标添加到树状数组中。这样,对于点i,只需要在树状数组中查询y坐标小于等于点i的y坐标的点的数量,即可获取该点的二维偏序值。在具体理解中,我们可以理解为树状数组在其中起到的作用类似一个垂直于y轴的"挡板"(如图4)。换句话说,这里使用的树状数组实际上是关于各个点的y坐标值的,这一点类似值域线段树.
  • 图4
  • 类似地,关于x轴的排序也可以理解为垂直于x轴的"挡板"(图5)(只画出了一部分以便于理解)

  • 图5

     

  • 由此可知,该二维偏序算法的正确性是由按照时间顺序(实际是x坐标的升序)不断向树状数组加点(实际只加了y坐标)保证的.

 


 代码如下(未经过严格测试):

#include<cstdio>
#include<iostream>
#include<queue>
using namespace std;
const int MAXN=1000010;
int maxValue,tr[MAXN];
int lowbit(int x){return x&-x;
}
void add(int x,int k){for(int i=x;i<=maxValue;i+=lowbit(i)){tr[i]+=k;}
}
int sum(int l,int r){int ans=0;for(int i=r;i>0;i-=lowbit(i)){ans+=tr[i];}for(int i=l-1;i>0;i-=lowbit(i)){ans-=tr[i];}return ans;
}
struct Point{int a,b;bool operator <(const Point &another)const{return another.a<a;}
};
int pointCnt=0;
int main(){int n;scanf("%d%d",&n,&maxValue);priority_queue<Point> q;for(int i=1;i<=n;i++){int tmpA,tmpB;scanf("%d%d",&tmpA,&tmpB);Point tmp=Point{tmpA,tmpB};q.push(tmp);}while(!q.empty()){Point nowPoint=q.top();q.pop();int nowValue=nowPoint.b;cout<<sum(1,nowValue)<<endl;add(nowValue,1);}return 0;
}

 

这篇关于二维偏序——常见问题解答的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099854

相关文章

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

java中long的一些常见用法

《java中long的一些常见用法》在Java中,long是一种基本数据类型,用于表示长整型数值,接下来通过本文给大家介绍java中long的一些常见用法,感兴趣的朋友一起看看吧... 在Java中,long是一种基本数据类型,用于表示长整型数值。它的取值范围比int更大,从-922337203685477

详解Linux中常见环境变量的特点与设置

《详解Linux中常见环境变量的特点与设置》环境变量是操作系统和用户设置的一些动态键值对,为运行的程序提供配置信息,理解环境变量对于系统管理、软件开发都很重要,下面小编就为大家详细介绍一下吧... 目录前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变

Java中常见队列举例详解(非线程安全)

《Java中常见队列举例详解(非线程安全)》队列用于模拟队列这种数据结构,队列通常是指先进先出的容器,:本文主要介绍Java中常见队列(非线程安全)的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一.队列定义 二.常见接口 三.常见实现类3.1 ArrayDeque3.1.1 实现原理3.1.2

MyBatis设计SQL返回布尔值(Boolean)的常见方法

《MyBatis设计SQL返回布尔值(Boolean)的常见方法》这篇文章主要为大家详细介绍了MyBatis设计SQL返回布尔值(Boolean)的几种常见方法,文中的示例代码讲解详细,感兴趣的小伙伴... 目录方案一:使用COUNT查询存在性(推荐)方案二:条件表达式直接返回布尔方案三:存在性检查(EXI

Python struct.unpack() 用法及常见错误详解

《Pythonstruct.unpack()用法及常见错误详解》struct.unpack()是Python中用于将二进制数据(字节序列)解析为Python数据类型的函数,通常与struct.pa... 目录一、函数语法二、格式字符串详解三、使用示例示例 1:解析整数和浮点数示例 2:解析字符串示例 3:解

MySQL查看表的最后一个ID的常见方法

《MySQL查看表的最后一个ID的常见方法》在使用MySQL数据库时,我们经常会遇到需要查看表中最后一个id值的场景,无论是为了调试、数据分析还是其他用途,了解如何快速获取最后一个id都是非常实用的技... 目录背景介绍方法一:使用MAX()函数示例代码解释适用场景方法二:按id降序排序并取第一条示例代码解

IDEA实现回退提交的git代码(四种常见场景)

《IDEA实现回退提交的git代码(四种常见场景)》:本文主要介绍IDEA实现回退提交的git代码(四种常见场景),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.已提交commit,还未push到远端(Undo Commit)2.已提交commit并push到

python进行while遍历的常见错误解析

《python进行while遍历的常见错误解析》在Python中选择合适的遍历方式需要综合考虑可读性、性能和具体需求,本文就来和大家讲解一下python中while遍历常见错误以及所有遍历方法的优缺点... 目录一、超出数组范围问题分析错误复现解决方法关键区别二、continue使用问题分析正确写法关键点三

JAVA数组中五种常见排序方法整理汇总

《JAVA数组中五种常见排序方法整理汇总》本文给大家分享五种常用的Java数组排序方法整理,每种方法结合示例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录前言:法一:Arrays.sort()法二:冒泡排序法三:选择排序法四:反转排序法五:直接插入排序前言:几种常用的Java数组排序